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PREFACE.

THE present treatise on the Differential Calculus is

believed to be the first, of any character, that has been written

and published in America as the special topic of a volume ;

and the first, so far as known to the author, ever published,

that professes the character of the present one.

In our country, and at this day, every mathematical book

must be eminently analytical and practical for the many. In

European countries, and past times, works upon the Differen

tial Calculus have labored to show, with curtness and severity,

just what the science has, at any date, discovered in far-

reaching achievement, for the few. Some compilations of

the latter have been adopted here, to find which, it is

necessary, for the most part, to search works on analytical

geometry.

The calculus being algebra, a strictly numerical science,

the present treatise claims to have labored successfully in

putting on the true character as such. No insinuation is

(v)
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allowed to
prevail that -it is any part whatever of analytical

rg^otnibttyy* or t that&quot; it is- -other than the natural sequel and

supplement of common algebra ; useful, indeed, as an appli

ance, to borrow, in investigation of the few kinds of geomet

rical quantity.

Aware of the indispensable importance, to a learner of any

new branch of science, that his already acquired knowledge

of the most nearly allied character should be adopted as the

central principle, around which the new ideas and sugges

tions are to acquire distinctness and character, the author has

commenced this treatise with the terms and appliances of

algebra, assiduously preserved and employed. The student is

thus enabled to hold his familiar ground, see his former paths

and landmarks, find the new objects designed for his atten

tion, tangible and actual, the fruits such that he may grasp

them, and add to the previous nurture and furnishings of his

mind. Accordingly, he will find here his favorite algebraic

problems placed before him in the phase in which the calculus

is required for their solution. The author is not aware that

concrete, practical problems of this character were ever before

published. In this manner is shown the early and element

ary nature of the calculus
;
that it entwines itself around the

very threshold of mathematical inquiry.

It is a definite, but perfectly normal fact in the history of

science, that the distinguished explorers of the mathematical
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laws of physical science were obliged to suspend their

researches, and come to a stand-still, in order to develop,

for necessary use, the elementary principles of the calculus,

then unknown to the world. Thus always will a neglect of

these, or any elementary truths, by persons who should be

well informed concerning them, avenge itself afterwards in

their perplexity.

This treatise has been prepared under the strong conviction

that its plan of analysis could not fail of adoption at some

stage of the natural prosecution of our general modern system

of instruction : it is simply the extension to this science,

in which an interest is becoming manifest, of just the ana

lytical methods already in use in reference to most other

branches of learning, particularly elementary mathematics.

In the many practical problems offered for solution, as a

distinguishing feature, the work aims at cultivating and

prolonging the enthusiasm of the student, by clothing his

conceptions of quantity in the garb of romance, or something

of a supposable human experience ; these conceptions may,

with the more interest, be erratic and fanciful as to econom

ical life, without ever filling or exhausting the generality of

pure mathematical conception.

It would not be practicable to present in detail, in this

place, the different features of the work. It has been pre

pared with a great deal of pains, and with reference to a
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well-considered plan. The consecutiveness of the analysis

has been kept in view ; not the accommodation of the equal

and consistent progress by a learner of a given intelligence,

through all its pages, in a given number of weeks. It has

rather the character of a hand-book, for collateral use

through much of a mathematical course, meeting the differ

ent grades of the growing intelligence of a few years, as to

one person.

NEW BEDFORD, MASS., 1865.
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DIFFERENTIAL CALCULUS.

SECTION I.

ELEMENTARY PRINCIPLES. A VARIABLE.

1. THE mode of developing the nature of the Differen

tial Calculus to be adopted in this treatise will be, taking a

point of departure within the common principles of alge

bra
;
for it is within these principles that the Calculus is

based; so far as algebraic quantities are concerned, the

calculus is but the completion of omitted algebraic princi

ples omitted from the general consideration of algebra,

for historical reasons only later and separate invention.

Algebra, in its ordinary character, had omitted to deter

mine a System of Principles according to which the value

or resulting amount of a formula must be inferred to change,
when a particular component quantity or quantities within

that formula should be supposed to increase or to decrease,

when near any specific value, or while passing through a

range of all possible values. This is the purpose of the

Differential Calculus.

2. The following Historical Statement in regard to the

Calculus has been derived from Professor Playfair s Dis

sertation on the Progress of Mathematical and Physical
Science :

&quot; Of the new or infinitesimal analysis, we are to con

sider Sir Isaac Newton as the first inventor, Leibnitz, a

1 (1)
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German philosopher, as the second
;
the latter s discovery,

though posterior in time, having been made independently
of the former s, and having no less claim to originality.

It [the latter s] had the advantage also of being first made
known to the world, which was in 1684.

&quot; This infinitesimal analysis, the greatest discovery ever

made in the mathematical sciences, as it became known

every where enlarged the views, roused the activity and

increased the power of geometers, while it directed their

warmest sentiments ofgratitude and admiration towards the

great inventors. By its introduction the domain of the

Mathematical Sciences was incredibly enlarged in every
direction. Although developed in a state applied to geome
try, it was afterwards justly inferred to be independent of it.

&quot; The fluxionary and differential calculus may be con

sidered two modifications [in the matter of notation] of one

general method, aptly distinguished by the name of the in

finitesimal
analysis.&quot;

3t In preference to the use of abstract language in illus

trating the nature of a variable quantity, let us use the

following problem :

A fisherman, to encourage his son, promises him 5 cents

for every throw of the net by which he shall take any fish,

but the son is to remit to the father 3 cents for each unsuc

cessful throw
;

after 12 throws they settle, when the father

pays the son the amount of the agreement, which proved
to be 28 cents

;
what was the number of the successful

throws of the net ?

Let x= the number of successful throws,

then bx 3 (12 a) =28,
that is, virtually, 8 a 36 = 28,

which is an equation of the First Degree.

4t Here we have, derived from the conditions given,
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an expression for the final sum paid the son, which expres

sion would not be different, whatever that sum might have

been found in the event to be. The expression

5z 3 (12 aj),

has a specific value, because it is equated with 28
;
con

sequently x is found to have the specific value 8. If

there had been a reserve in the problem whereby the

amount of the payment had not been declared, or if the

formula for payment were to remain for any number of

trials of the 12 throws, in accordance with which, 28 cents

could hardly be expected to be the sum paid at each settle

ment, we should still be able to determine all the relations

between the changes of this sum due the son, and the

changes of the number of successful throws.

5. If the amount paid or to be paid, were to be styled

a sum of money, or y cents, we might look upon the ex

pression
5x 3 (12 x)=y

as one in which neither x nor y has a determinate value;

but they have exactly determinate relative values. If x

or the number of successful throws, receive original sup

positions of value, y or the formula has an inferred or a

relative value :

If x= 0, then y= 36 cents.

aj= 4, &quot;

y
&quot;

x= 14,
&quot; y= 76 &quot;

&quot; x= 58,
&quot; y= 500 &quot;

&quot; x= 12,
&quot; y= 60 &quot;

&quot; x= 11,
&quot; y= 52

It is at once evident that if x be increased by 1, y will be

found increased 8 times as much, each of them in their

respective kinds of units.

0. There is no algebraic limit to this relation of the
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change in y being 8 times the change in &, between infi

nite positive and negative values of either
;
nor any in

terruption in the case of fractional values.

The disability of executing in the problem, fractional

and negative values in x
9
is not one which affects in the

least the algebraic expression, or the truth of its most gen
eral indications. For when the successful throws are as

sumed to be 14 (although the whole number is but 12), so

that the unsuccessful ones must be algebraically expressed
12 14 or 2, in accordance with which view, 76 cents

are paid the son at the settlement, the explanation that the

indication is correct, is : for every unsuccessful throw the

sum paid to the son is algebraically 3 cents; if there be

2 of such throws, then

3X 2= 6;

now 6 is the number of cents by which

5 X 14, as found

in 5 X 14 3 (12 14) = 76

is properly increased. So that the unlimited amount which

may be indicated as payable to the son at a settlement,

logically agrees with a correspondingly unlimited number
of successful throws, which may be supposed, as indeed it

ought.

7. In the really strict use of common language, the limits

for the sum paid to the son at a settlement, are from to 60

cents. In the language of algebraic equivalents, there are

no limits whatever, in connection with the supposed prob

lem, because its indeterminate quantities so far enter into an

equation of the First Degree.
The first member of the equation

5 3 (12 x)y
expressing the amount payable to the son in form and
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detail, constructed with the indeterminate quantity x, in

connection with other determinate quantities, so that the

expression varies when that quantity x may, is an instance

of a function of a variable, which variable x may be.

Using y as the equivalent of the function in amount only,

we may call y that function, when thus equated.

8. A variable is a quantity which may have different

values, and is represented by the late letters of the alpha

bet, x, by y or by z.

9. A constant quantity, whether known or unknown,
is one which by original assumption is not to vary during
an investigation into which it enters, or by inference is found

to be so conditioned as not to vary, and when known, it

is represented by number, as 1, or 20, or by a or b, etc.
; d,

however, is used to signify differential, and its use purposely
avoided as any quantity of itself.

10. When several quantities are so related as to deter

mine one another, or to depend on one another by equa
tion

;
a variety of mutual investigations may be instituted

among them, by arbitrarily assuming an independent varia

ble or variables, and then examining the law of the varia

tion of the dependent variable.

11. Recurring to the problem of the fisherman, we have

the equation
5;c 3 (12 x)= 28,

which answers its algebraic purpose of determining one

specific value for x, which is 8, the number of successful

throws of the net. If 8 be supplied in the place of x, and

any one of the other quantities of the equation were left

unstated in the conditions, and be made a; in a new investi

gation, it could be determined. Indeed if any two of the

quantities were unstated in amount, the mutual dependency
of the two becomes evident. For a conventional reason we
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will call that quantity cc, to which we may wish to reserve

the right to assign arbitrary values, to the extent that we
can do so, and will call the other, which receives inferred

values, y. The exchange of x for y we will call the con

verse of the investigation. When yean be isolated as one

member of the equation, not occurring in the other, the

function of x is called explicit. We will suppose the

explicit form of the functions of one variable aj, implied in

some of the following statements of the above equation, to

be worked out, and we will suppose their significance to be

enunciated in words.

1. 5c 3 (12 x)= y.

2. x. 8 (12 8)= y.

3. 5X8 3 (oj 8)= y.

4. 5X 8 a (12 8)= y.

5. $y x (12 8) = 28.

6. 8y 3 (x 8) = 28.

7. 5cc y (12 x) = 2S.

8. 5X8 y (oJ 8) = 28.

9. by 3 (x y) = 28.

10. x . y 3 (12 y) = 28.

Each of the above has evidently its converse.

It may be useful to adopt a comprehensive enunciation

of the problem.
In the parentheses ( ) which follow in the problem, let

the following reading be understood : the variables now

being supposed to be two, one depending on the other, viz :

(For such number is exactly compatible with the other

numerical quantities, received as given, without regard to

the brackets.)



A VARIABLE. t

In the brackets [ ] let the following reading be under

stood :

[Or an indefinite numerical quantity, if in one of the

other brackets, another indefinite numerical quantity be

understood to be read.]

12. A fisherman promises his son 5 cents ( ) [ ]

for every throw of the net by which he shall take any

fish, but the son is to remit to the father 3 cents ( )

[ ] for every unsuccessful throw ;
after 12 throws ( )

[ ] they settle, when the father pays the son the amount

of the agreement, which was 28 cents ( ) [ ],
there

proving to have been 8 ( ) [ ] successful throws. Re

quired all the truths dependent on the various readings,

for each two of these indeterminate but mutually depen
dent quantities.

All of the above equations and their converses, except
the 8th and 10th are of the First Degree, and the variables

in them may have any algebraic values, positive, negative,

or infinite, and they vary at uniform rates, in passing from

one value to a succeeding one.

In the 8th and 10th and their converses, since the varia

bles are factors together, the equations are of the Second

Degree, and their variations are subject to other laws.

13. Such relative rates of variation are subject to exact

numerical determination, which it is the object of the suc

ceeding Sections to explain in their general nature.

14. It is now evident that those problems in algebra which

are based upon Simple Equations or those of the First

Degree, are such only with reference to the one investiga
tion for which they are offered, and that a change of the

investigation for determining other relations between quan
tities fully conditioned in such problem, is likely to require
the use of Aifected Equations, which are always as high
as the Second Degree, and may be higher.
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SECTION II.

DEFINITIONS RELATING TO FUNCTIONS. THE USE
OF SIGNS.

15. An explicit algebraic function of a variable quantity,

is an indicated mode in which addition, subtraction, multi

plication, division, and other arithmetical processes with

quantities, either, any or all of them, in or among which,

said variable is somehow concerned, are used for working
out a resultant quantity, and among which indicated opera

tions, this variable quantity holds a marked position, as the

one to which a particular reference is to be made in regard
to its changes of value.

16. Hence a function is primarily and always a mode

ofconstituting a quantity ; although a function of a variable

may, after some hypothesis for itself or that variable, pos
sess a value, the function cannot be considered as merged
in a specific amount of quantity. We cannot speak of a

great or of a small function, as some writers do because that

means a great mode^ a mode is not a value or a quantity.

17. Strictly speaking, a function of a variable, having as

it may, constant quantities in it, is a function of all the dis

tinct quantities in it, because it requires them all to per

form the office of representing some quantity in mode, but

custom has sanctioned calling the whole expression, that

determines some designed quantity, in which the variable

occurs, a function of the variable, although the variable

occurs in no more than in one of the terms of such ex

pression, and in the simplest manner; and however com

plicated other terms containing constants may be.

18. Functions which are not algebraic have restrictions

to Geometry, Trigonometry, or to Logarithms, which are

to be considered in this treatise. Functions which are not



DEFINITIONS RELATING TO FUNCTIONS. 9

explicit, may be implicit, or involved in an equation, and

determinate as a mode, only after algebraic process. The

implicit is the most general and comprehensive. It is often

subject to difficulty of solution, or to impossibility.

19. A formula is an expressed mode of operating with

quantities, for deducing the amount of another. In a for

mula, as such, there is not necessarily a quantity, to which

any reference is to be made as subject to change of value.

An explicit function is a formula, in which there is a

quantity, subject to a change of value, and subjecting the

formula to a change of value.

20. There is no absolute need of any equation in the

statement of an explicit function. The equating of it with

its own correspondingly variable amount called by another

name y, is often only a piece of convenience. Whenever a

function of a variable appears equated with a determinate or

constant quantity, supposition is evidently applied for the

value, or values if there should be more than one, of that

function. If that constant is not removable, or open to

supposition for a change of value, the variable x may take

the name of unknown quantity ; although, since it is deter

minate it might be regarded as known, in the calculus. We
sometimes use a function of a constant

;
this is when such

constant occupies only temporarily the place of a well un

derstood variable.

21. When the conditions of an algebraic problem are

stated in the form of an equation, the members of such

equation may each be functions of the unknown quantity,
but may be reduced to one function, for the value of some

other quantity.

22. A marketman purchased fowls : some 2 for a dollar,

and as many more 3 for a dollar, and sold them at the

rate of 5 for 2 dollars, losing 4 dollars by the operations ;

required the number of each sort.
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Let x = the number of each sort;

then we have these two expressions for one sum of money,
which may be put equal, viz :

In case the number of each sort or x be variable, these

two expressions will permit the forming of one function of

JG, for the sum lost, viz :

This function remains the same if the sum lost were in

definite, and were to change only on change of the num
ber of each sort ;

in the supposition it is, when without an

equation :

X
i

X 4:X

~2 3 5

and it is ready for the comparison of the number of dollars

lost, during changes of the number of each sort. It will be

convenient to equate it with y, as being also the number
of dollars lost.

33, The problem can be enunciated, in the general aspect,

for algebraic determinations, and for the calculus deter

minations, as before, with the fisherman problem.

34. All strictly algebraic quantities in the Differential

Calculus, are subject to algebraic expression, and are numer
ical in their nature, and are real or imaginary or irrational

in value. All functions have numerical amounts, or ex

pressions, for their values, when rendered determinate

and real.

25. Three triangularly placed points (/.) are used to sig

nify hence or therefore.
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26. One of these characters, &amp;gt;
or

&amp;lt;,
is placed between

two unequal quantities, the larger quantity of the two

being embraced by the limbs of the character, and may
be ^read, being greater than, being less than, or, is

greater than or less than.

27. Zero, or naught, is freely treated as a determinate

value for quantity. Hence, in the expression &amp;gt; a, a is

negative. A quantity that is negative is freely called less

than nothing, for the uniformity and brevity of the mode
of expression. When zero forms one member of an equa

tion, it both marks and simplifies it, for some general uses ;

hence its use.

28. A single point ( . ) is used as an abridgment of the

sign of multiplication X- When the point is placed directly

between figures, it ought to indicate decimals, with never

theless, easily understood exceptions.

29. A prostrate figure of co signifies an infinite quantity.

30. The sign of equality,= may often be advantageously
read as a verb equals, sometimes as equalling, or as, that is,

or as, that is to say.

31. The Binomial Theorem should be mentioned as the

Foundation of the essential principles of the Calculus, and

is demonstrated in most treatises of algebra, as related to

indexes being whole and positive numbers.

The extension of its demonstration, to embracing bino

mials having fractional, negative, or imaginary indexes is

commonly made in the Calculus as a sequence to Mac-
laurin s Theorem.

The following ocular views of one -application of the

Binomial Theorem, will impress its law more concisely
than the use of n, n 1, n 2, etc., will do.

*T *
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32. The differences in the successive supposed values of

a quantity, may obviously be fractionally minute
;

the

conceiving of a quantity at such successive values, gives rise

to the idea and expression, of the growth, decrease, etc., of

the quantity. It was this unnecessary transfer of the mode
of apprehending quantity in this state by the mind, to the

quantity itself, that gave rise to considering such quantities

as &quot;generated by motion,&quot;
&quot; the quantity thus generated

is called the fluent or flowing quantity,&quot;
&quot; the velocities

with which flowing quantities increase or decrease at any

point of time, are called the fluxions of those quantities

at that instant.&quot; (Vince s Fluxions.) These forms of ex

pression have been wisely discontinued
; although a modified

form of these expressions is sometimes convenient, such as

growth faster and slower, of the value of a function,

or of a quantity.

SECTION III.

THE DEGREES OF AN EQUATION. FIRST AND SEC

OND DEGREES.

33. An algebraic equation of the First Degree contain

ing one quantity called unknown (but which, however, may
be entirely determinate, having a fixed value) in the form

best adapted to exhibit its degree, and consequently to offer

the best opportunity for showing the nature of its quanti

ties, is by general expression

in which A embraces the algebraic aggregate of all given

quantities, which are factor with x, and B represents gen

erally all other quantities, and each term has the sign +
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(plus) in the sense that is understood to embrace minus, in

case the particular conditions require it. It is evident that

the value of x is determinate when A and B are not each

at once zero or infinite.

PROBLEMS.

34, It is required to determine whether the following

equations are of the First Degree, and in what form A. and
B are represented.

O+VT) .

1. c - -f- c = 150 a.

35. The general equation of the First Degree contain

ing two quantities, x and y, indeterminate in value is,

in which A is the aggregate of given quantities, factor to

a;, and B of given terms, factor to y, and in which C is the

aggregate of terms given separately. Only the quantities

implied by A, B, and C being known, x and y cannot be
determined by them. Nevertheless it is evident that there

is a relation always implied between the values of x and y,
which the equation and the fixed values of A, B, and C
preserve.

30, In the particular case in which A or B should have
the value zero, x or y receives a fixed value. It is in

tended that A) B, and C should represent determinate and

unchangeable quantities in any particular use, and should
be general only for the expression of a general formula. In
the particular cases in which A should be infinite, while B
and C are not, x loses general values, and must become
zero. In the particular case in which B should be infinite,
while A and C are not, y loses general values, and must be
come zero. In the particular ease when C is infinite, while

2
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A. and J5 are not, both x and y may be infinite, and one of

them must be infinite.

37. In the particular case when A and C are each infi

nite, while IB is, or is not infinite, since x becomes

By c
*c/ .

A A

it will be indeterminate.

The quantities of which A, It, and C are the represen

tatives, if definite in value may be called constant with

reference to any investigation, for which a purpose is sub

served in making them so, while x and y may vary in value,

but evidently with a dependence upon each other
; they

may be variables.

38. THEOREM. In an equation of the First Degree be

tween two variables, if one variable be supposed to change

uniformly in value from any supposed definite value, the

other must change uniformly in value.

39. The variables in an equation of the First Degree may
have the utmost range of values.

40. But in reference to the amount of variation, that va

riable x, which is factor to A, will vary uniformly as many
times y (the factor of J5), as is expressed by the quotient
TJ

-, and they need not concur in increase or decrease, as the
A.

mode of simultaneous variation.

41. In the particular case when A = l and _Z? 1, and

y is negative, we have the principle of Simple Addition in

Arithmetic, or

x+C=y,
when it is evident that if x be increased, y is dependency
increased. Because, if one of two numbers which are pro

posed to be added, be first increased, the amount is as

much increased. If x be negative, the equation of the First
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Degree as above, becomes the representative of the nature

of Simple Subtraction in Arithmetic, with a properly cor

responding result.

42. In the particular case when A or B is negative and

(7=0, we have
Ax

A x

being like two factors in Simple Multiplication, and

y their product, and it is evident that if x change in

value, y or the product will change times as much as
B A

the one factor x. But it is evident that may be less
B

than a unit.

43. The general equation of the Second Degree between

two variables x and y is

= 0,

where in the particular case of A= 0, C=Q,J3= 1,

D= 0, and E= 0, we have

which is the representative of the nature of Simple Divis

ion in Arithmetic, if we propose to let a divisor and the

quotient vary, and the dividend remain unchanged.
44, Here we may expect some law of mutual variation

between x and y, different from what appears in respect to

them, in equations of other degrees.

If we take any number, as 257, as dividend, and divide

it by any number, as 18, and then let the divisor be changed

by a specific amount, 3, we have

257-^18 =
257 -7-21=
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and again, divide it by any number, as 8, and by 8 + 3,

we have .

257 -^ 8 = 32,

257 -r 11= 23A,

where we soon perceive that the change in the quotient is

not uniform ;
and we should find that according as the di

visor and quotient approach equality with each other, will

the rate with which the larger decreases, diminish with a

retarding rate, compared with the less, supposed to vary
with an assumed uniformity, which is both a possible and

necessary mode of making the supposition.

45. In the particular case where A= Q, B= 0, (7=1,
D= 1, and F= 0, we have

. e., #=2A
in the examination of which we shall find that the second

or square roots of a quantity, do not vary uniformly with

the quantity.

46. The complete discussion of the equation of the Sec

ond Degree, is comprehensive of a protracted variety of

particular cases and principles.

In the use that is to be made offunctions ofvariables^ we

may not be able to know all of them by classification as

of any numerical degree that has been numbered or defined,

although quite desirable when it may be readily determined.

47, When the variables x and y in an equation are at

powers expressed by whole and positive indexes, the nu

merical name of its Degree is determined by the highest
sum of the indexes of the variable or variables which are

direct factors in any one term, with A or .#, etc.
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PROBLEMS.

48. It is required to determine of what Degree are the

equations :

2. *abx * = * a.

ax 2 (a + b)xy

The general equation of the Second Degree

(1.) Ay*+3xy+Cx*+ Dy +E
when y is equated with its value, gives us

(2.) y =_f5 -Lv j (^-/ ^1 / yi
(^

2 (^ Z&amp;gt; 2 .4 j) z + D 2 4 A FI .

Now the quantities represented by the capital letters,

are general in these equations, but become particular, in a

given applied case. According to the relative value of

these constants, a classification of the nature of the Sys
tems of values of y and of x may be made. Of these,

three systems of values for y and x are prominent, condi

tioned thus : they are,

1. when B*
4^L&amp;lt;7&amp;lt;0, Elliptical ;

2. B 2 4 A
C&quot;&amp;gt; 0, Hyperbolic ;

3. B 2 4 A O= 0, Parabolic.

40. Since the general equation is symmetrical with refer

ence to y and x, these variables have corresponding sys

tems of values, which values are equal when the constants

2*
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A= C and D E, and retain a similar nature when these

constant^ are not equal.

50. In the elliptical condition, both x and y have a maxi

mum and a minimum value.

51. In the hyperbolic, there are two systems of symmet
rical values for each variable, isolated from each other;
and if there be a maximum for one of them there must be

a minimum also for it, and there may or may not at once

be a maximum and minimum also for the other.

52. In the parabolic, there must be a maximum or mini

mum for one of the variables, and there may be for the

other.

53. In the general equation there may be only imaginary
values to one of the variables, when there must also be to

the other
;
these occur when the quantity under the radical

sign is found negative in equation (2.)

In geometry much importance is attached to the indica

tions of these equations, in the study of Curves of the

Second Degree. The terms, maximum and minimum,
will be seasonably defined.

SECTION IV.

INCREASE OF FUNCTIONS. DECREASE OF FUNCTIONS.

-STATIONARY VALUES OF THEM.

EXERCISES.

54. 1. There are purchased 99 pounds of a commodity
at a price fixed to-day, but liable at the next purchase to be

found changed. How many times more will the value of

the 99 pounds vary, than the value of a single pound ?
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2. How many times more will the value of 17,000

pounds change than the value of 1 pound of it ?

3. How will the value of one sixteenth of a pound vary

compared with the value of one pound of it ?

4. How will the capacity of 100 equal casks vary com

pared with the capacity of one, if the casks should be made

larger, on a repetition of the manufacture ?

5. How will b x change if x change ?

6. How will (a -f- b c) x vary in amount if x grow
greater ?

7. If A expresses the amount that x, in the above twro

expressions containing #, changes, what expresses the

amount of the expression s change ?

8. When a commodity is worth 10 cents a pound, and

it is quoted as tending upward in price, does the value of

100 pounds commence to increase any faster or slower than

it would if the price were 15 cents per pound, and the

value of the 100 pounds commenced to increase from that?

That is, does the ratio of the growth of 100 x to that of

1 x depend on the greatness of the quantity jc, or on the

amount of the growth of x ?

9. Does that function of cc, which 100 x is, grow uni

formly, on uniform increase of x ?

10. Will 8 x 2
grow uniformly on growth of x ?

11. How great could the value of 1542 pounds of a com

modity ever become, by an indefinite increase of the price
of one pound ?

12. If x varies, which of these two functions of aj, viz.,

10 x and 11 c, will vary the more in amount ? How much
more ?

13. If the value of 71 pounds of a commodity be nega
tive, or be considered subtractive from some greater sum,
would an increase of the value of the 71 pounds be nega
tive ?

14. How would the amount of the decrease of the value
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of the 71 pounds stand, as affecting the original greater

quantity ?

55. Both the number of pounds of a commodity and the

number of cents per pound, will now be conditioned to in

crease
;

if there are u pounds, at x cents per pound, and

the pounds increase by any amount &, and the cents per

pound increase by any amount A, what expresses the new
entire value ? What expresses simply the increase of value ?

1. If the amounts k and h be considered alike, or each

h, how does the expression of the increase of the value of

the commodity become united ?

Ans. From ux-\-uh-\- x k-\-h k to u x-\- (u-\-x) h-\-h*.
2. How does the expression still more condense, if the

original number of pounds, and number of cents per pound,
were alike, or each x ? Ans. Into a?

2
-[-2ajA-|-A

2
.

3. What are the factors of just the increase ?

Ans. h and 2 x -\- h.

56. Thus far the quantities u and k x and h may be any
whatever. But a quantity situated and treated like h as an

increment of a*, may be moulded to a purpose, a merely
mathematical purpose, be a creature of supposition, sub

servient to the illustration of a mere addition to a?, and may
be indefinitely small

;
while x is a quantity to be accepted

as given ;
it is any quantity, till made determinate by some

condition.

57. If there are x pounds of a commodity at x cents per

pound, and x be increased an indefinitely small amount A;

by how many times as much as A, at the least, will the value

of the whole of this commodity, commence to increase ?

Ans. 2 x.

How many, to decrease, if x diminish as much ?

Ans. 2#.

1. If the number of pounds be restored as w, while k
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may be h according to the above indication, how many
times as much as 7i, at least, will the value of the whole

commodity commence to increase ? Ans. x -\- u.

2. How many, if u increase while x diminishes ?

Ans. x -f- u.

3. How many, if u decrease and x increase ?

Ans. x u.

4. If x pounds of a commodity, worth x cents per pound,
are possessed by each of 9 persons, how will the whole

value commence to decrease, if x decrease by (an amount
that is merely nominal) h ? Ans. 9 X 2 x times h.

5. If one of these persons obtains his share from a lot

of 20 pounds of the commodity, all of the above value, how

many pounds does he take when he leaves the greatest

possible value possessed by that remaining lot ?

6. In 20 x x 2
apply successively 1, 2, 3, etc., for cc,

till the greatest remainder be found.

7. If a piece of ground conditioned to be kept square,
is to be enlarged, on how few of its sides must the new
area commence to form ? On how few, if the square must

decrease, must the deductive area commence to form ?

8. There is a rectangular piece of ground 10 rods in one

dimension
;

its other dimension is the same and to be kept
the same, as the side of a certain square piece of ground ;

upon the suggestion that the sides, one of each lot which

are alike, commence to increase, which lot commences to

increase the faster in its area when that common side is 4

rods ? When 6 rods ? When 2 rods ? When 1000 rods ?

9. What number of rods must that common side con

tain, when the greater rapidity of the growths of the two

lots, passes from one to the other? From which, to

which ?

10. When the side of the square lot is 50 rods, and the

lot commences to increase, will the product expressing
the increase of area, have one of its factors greater than
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if the side was 49 rods, and the increase then took

place ?

11. If we have this function of a;, viz., 92 x x 2
,
con

sisting of a minuendive and a subtrahendive term, must

the value of the function, which evidently consists of their

difference, always increase while the minuendive term

increases the faster of the two ?

12. Must its value decrease when the subtrahendive

term increases the faster ? Can a value of x and of the

function be found, when the increase of the subtrahendive

term, being negative, is equal to the increase of the minu

endive term, which is positive, so the sum of the increases

equals ?

PROBLEMS.

58, 1. Let it be required to divide the number 92

into two such parts, as Avhen multiplied together, shall

produce the greatest product.

Let x = one of the parts.

.-. 92 x = the other.

/. 92 x x 2 = their product.

When the function is the greatest in value, it is evident

that either adding or subtracting any small and indefinite

amount A, to or from x, diminishes the value, so that

92 (x + h) (aja + 2 x h + A 2
) &amp;lt;

92 x x\

and 92 (x h) (x* 2 xh + A 2
) &amp;lt;

92 x x*
;

therefore in accordance with what has been said,

and 92A&amp;gt;2xA A 2
,

where all the signs of the last expression have been



STATIONARY VALUES. 23

changed, because the members of the inequation are com

pared only with each other. Hence,

92
&amp;lt;

2 x 4- h,

and 92&amp;gt;2aj A;

hence, x = 46 within one half of the smallest quantity
that can be conceived of.

2. A boy having 16 equal parcels of marbles, gave to as

many boys as there were marbles in a parcel, as many
marbles each as there were boys, and retained the great
est possible number himself, for any number in a parcel.

Required the whole number of marbles
;
of parcels ;

of

boys; number of marbles given away, and the number
retained. Ans. 128, 8, 8, 64, and 64.

3. Some benevolent persons, gave each 240 dollars to

some orphans ;
four times as many orphans each month

received 2 dollars each, and during three times as many
months as there were contributors

;
the unexpended sum

was still the greatest possible. How many persons

gave? Ans. 5.

59. It is generally possible, when the terms of a func

tion are simple and few, not fractional, when the indices

are positive and entire, to foretell, on logical principles,

whether it is a maximum or minimum that a function has,

if but one. For instance, by noting the sign of the term

having the variable at the highest positive power, we shall

perceive that at some positive value of the variable, such

term will rule
;

if this be positive the presumptions are, a

minimum at some value of the variable, if there be either,

if this be negative the presumption is reversed ;
such

term being destined to infinity in itself, w
T
ill leave the

maximum or minimum behind.

4. Consider x 2 92 x in these regards.
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Infinite and positive are easily inferred
;
a minimum prob

able. If the function be considered settled at a minimum,
then x takes a definite value

;
and if x be increased, the

positive member must increase more than the other

diminishes
;
so that, as before,

2x!i + hz&amp;gt;
92 A;

and again retrospectively, subtracting the last that x gained
in its growth, for the function by hypothesis did diminish,
and the negative term had diminished more than the pos
itive increased, so that we have, as before,

92 h&amp;gt;2xh A 2,

and x = 46 as before.

So it appears that nothing is different in discovering a

minimum, from discovering a maximum.
The consideration of a function, when not readily dis

closing its tendencies in these respects, especially when it

probably has both maxima and minima, is deferred to

another section of the treatise.

5. From a cistern holding 6218 times a certain measure

full, were taken away that measure full 11 times each day,

during as many days as that measure held gallons. The

greatest possible number of gallons were left in the cistern

at last
;
then how many quarts did that measure hold ?

Ans. 1130 T
6
T .

6. A grain dealer sells to A the same number of bush

els of grain out of 100 bushels, as he sells the remainder

to B for, in cents additional to 25 cents per bushel, and

realizes the greatest possible sum from that sold to B.

Required the number of bushels sold to A, and the price

per bushel of that sold to B.

Ans. 37J bushels, and G2 cents.

7. From a cask containing 19 times a certain measure
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full of water, a smaller measure by 7 quarts is drawn full, as

many times as it held quarts, when the greatest possible

quantity of water remained behind in the cask. Required
the capacities of the measures. Ans. 16^- and 9 qts.

8. From a lot of 1501 (a) bushels of hay-seed 79 (b)

casks full were put up for exportation ;
the remainder were

sold for home consumption, at 3 (c) dollars per bushel

more than there were bushels in a cask. Required to ad

just all the quantities which are not stated definitely,

to the greatest value of the home sale.

Let x = number of bushels per cask.

/. x -[- c = dollars per bushel.

.-. bx=. number bushels exported.

/. a b x = number bush, sold at home.

... (a 5 x
) (x + c) =: number dollars home sale.

or (a c b) x b x^ -f- o, c = number dollars home sale.

When this last sum is greatest if x be increased, and after

wards diminished by /i, we have,

(a c b) h
&amp;lt;

2 b x h + h 2
,

(a cb) /&amp;gt;
2 bxh h*,

a cb 1501 3 X 79
and .-. x = - = - = 8.

1b 2 x 79

Amount of sale $9559.

It will be perceived that the quantity ac, being con

stant, disappears from the reasoning. In the generalization,
if cb

^&amp;gt; a, the value of x would be negative.

9. A boy was offered the use of a rectangular play

ground, which he could surround with his kite string, 80

rods long, but he must determine its dimensions such,
should he afterwards incline to increase or diminish the

width the least, it would be at the rate of enlarging or

diminishing the area, 10 square rods for one rod that

3
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should be added to the width of the playground, or taken

from it.

Let x = width.

/. 40 x = length.

/. 40 ce
2 = area.

Now, if x become x -f- A, 40 h 2 x h h 2 is the area s

increase
;
but it is conditioned to be equal to the area of h

by 10 rods, i. e., when h =. 0, but when h
^&amp;gt;

we must have,

10
&amp;gt;

40 2 x h.

Likewise, if x become x A, the area s diminution in

amount when positively expressed, will be 40 A 2ajA-|-/i?,

which also
^&amp;gt;

10 h by the same condition ; hence,

x
&amp;gt;

15 $ A,

and
oj&amp;lt;15 + jA;

which conditions make an equation, when h begins to be an

amount, and while it is practically ;
.:x= 15. In some

sense h may be considered a mere suggestion of quantity.

10. How great could the playground ever be made ?

How small ? Does it change faster when near a square, or

wThen most at variance with a square ?

11. The number of pounds of a certain commodity
added to its number of dollars value per pound is 576

;

what is its price, when the suggestion that the price

begins to vary the least (in our mental adjustments of it),

requires the inference that the value of the whole will be

gin to vary 19 times as fast?

12. A very cautious man has been offered the opportu

nity of laying out for himself a rectangular piece of ground,
which shall contain 6 acres; two contiguous sides of which

must agree with, and be a part of an established north and

south, and an east and west line, meeting like two edges of

the sheet of this page. The particular difficulty has been the
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establishing of the unspecified corner. He has walked
over the ground line so much in which he might establish

said corner, that he* has worn a path a portion of the way.
He could not walk over the whole track, because it may
be found to be infinite in length. He finally determines

the boundaries so that the lot shall embrace a certain

spring of good water, and drives down his stake for the

indeterminate corner at such a point in that path, that

the suggestion of varying it along that path, the least

amount, requires the inference that the length of his lot

must increase 3 times as fast as the width would di

minish. Required the length and width.

13. In the equation xy y a= 0, a being a con

stant x and y variables
;

if x can be 22, what will be y, and
what the tendency and rate of y to increase or decrease,
on increase of x (if it can increase) ?

Ana. y to decrease 2f f times as fast as x to increase.

SECTION Y.

THE BINOMIAL SERIES. SOLUTIONS BY INEQUA
TIONS.

00. THEOREM. If the quantity in the Binomial Series,

whosepowers increase, in the successive terms, be sufficiently

small, any term of such series will be greater than the sum

of all that follow it, or less.

If the binomial (x h)
n be developed by this series, n

being a whole number, negative or fractional, it becomes,

x n A x n~ l h + B x n~ 2 A 2 Ox n~ 3 AS -f etc.;

that is,

x n (Ax n~ l Bx n ~ 2
h-\- Cx n- 5 k* etc.) A:
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where A, B, and C are quantities which contain neither

x nor A, but are coefficients which may be otherwise com

posed of n and numerals.

61. Now, it is evident that the first term within the

parenthesis will not grow smaller by any diminution which

h may undergo, as all of the succeeding terms do without

limit, and consequently their sum, and become less than

any assignable quantity, and, of course, less than that first

term.

The above is evidently true whether n be negative or

fractional, because we have only to regard #, or its recip

rocal -, with whatever index, as some quantity.

63, If any other term in the foregoing series, than the

one just used, be selected, dividing it and all succeeding
terms by h with whatever exponent h may have, the truth

of the theorem becomes apparent. If the selected term be

negative, it is shown to be less than the algebraic sum of

all succeeding ones, because that sum approximates zero

indefinitely with A, while the selected term cannot become

greater. However, in the application of the theorem, we

may change the signs of every term of the series, as we

may wish to compare quantities simply in their amount of

difference from zero.

The principle of the theorem is true with greater general

ity than the simple form (x A)
1

,
for any function of # A

developable in a similar series, may replace that of partic

ular powers of x A.

63. Although in a later section technical definitions of

the terms maximum and minimum will be given, a gen

eral idea of these values of a function has already been

given ;
we proceed now to determine, by the aid of the

theorem, some of these values in problems, where a devel

opment gives rise to protracted series, and by the use of

inequations.
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PKOBLEMS.

(V4. 1. Let it be required to determine whether the

remainder expressed thus,

a x x 3
,

has a maximum or greatest value.

By inspection, the term -having the highest power of x
is observed to be negative, hence the remainder may evi

dently be infinite and negative ; and, the terms being two,
a maximum is probable.

Supposing x in the expression or function of x, to be

such in value as to render the function of the greatest

value, and it be suggested that x then receive the addition

of a small quantity A, then the amounts appended to the

respective terms are related thus :

i. e., a
&amp;lt;

3 x* + (3 x + h) h.

Again, if h be subtracted from x in each term, the amounts
subtracted from each term, treated here as positive for a

mutual comparison only, are related thus :

i. e., a
&amp;gt;

3 a 2
(3 x A) h,

where if h = 0, a = 3 a 2
,

and x= -4- (- V.~W
Here we find two answers, so we may infer that we ought
to have asked if a x x 3 may not also have an infinitely

great positive value, which we should find to be true in

the negative values of x. When the function is adapted
to express its values with x negative, it is

(-J- a X aj)
=

( x X x X ),

that is, a x -\- a
3
,
or x 3 a x.

3*
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In reasoning upon this basis, our signs of inequality would
have been the reverse of what they have been, but the

result the same.

2. Let the function of x be ax3 x 4
.

On inspection, the function having different powers and

the highest power of x in a negative term, it is probable
there may be a maximum

; considering x to be such that

the function is at a maximum, and using h as before, we

have,

and on diminution of x by the amount A,

3 a x* (3 ax - a h) h &amp;gt;
4z 3

(6 x*h 4aA 2+ A 3
) A;

where we have changed all the signs for the reason before

given, and restored those within the parenthesis, because

they are prefixed by minus.

These inequations must remain such after we have dimin

ished the smaller member by dismissing an added term

(3 a x + h) A, and have increased a larger member by

dismissing a subtractive quantity (3 ax ah) h. So that

representing the quantity within the parenthesis of the

right hand by S and $ ,
we have

3 aaja4aj 3

hence 3 ax z = 4 x 3 .: x = a.

There is no minimum value for ax* a?
4
,
because when

it is regarded with respect to the negative values of x it

appears as

x 4
;

for the function^ as first given, is
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ax 3 x 4
;

i.e., a (+xX+xX+x) (+a X +* X +z X +&amp;lt;e).

Now the sign of x changed gives us

ax 3 c 4
,

or, a( xX xX a?) ( #X a X #X
&amp;gt;

3. To determine if the function # aj
3
-j- a;

4 has a minimum
or least value, at negative values of x.

4. To determine if the function 3 x 3
-|- 7 x 5cc 2 has a

maximum or minimum value, or both.

Supposing x to take an increment A, and, whether we

regard the maximum or minimum, we find, after coupling
terms of like signs as distinct members of an inequation,

and eliminating as before,

which gives two values of cc, one adapted to a maximum,
the other to a minimum.

5. To determine the maximum or minimum value of the

function :

6 + z-- 8 x.
9 + z

Here in positive values of x the minuend cannot be great
er than 1, nor less than

f. ; but the subtrahend may be

infinitely negative. So, regarding the remainder the

greatest possible, we must have, if x be increased by A, and
decreased by h :

5 + * + h 5 + x--
&amp;lt;C o fll

S + s * 5 + x-h
9+*-A~^n^ 8A ;

reducing to a common denominator, adding terms -and

dividing by h, we have
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9 5

(9 + x + A) (9 + x)
&amp;lt;

and

whence, when h 0, we have

(9 + *)

which determines , one of the two values of which are

for a minimum.

6. Has x 2 a maximum ?

This is equivalent to x 2
; then as before,

2zA A 2

A 2
,

.*. a? = at the maximum.

7. Required the value of #, which renders x 4
-\- ax a

maximum or minimum.

It may, by inspection, be inferred to be infinitely great,

at one value of aj, therefore it is probable there is only a

minimum
; using zero to represent a subtrahend, we have

from ,

x 4 + ax 0,

4 x * + h #-{-&amp;gt; 0,

and 4x 3 h # -fa&amp;lt;0;

... 4 X 3 _ a _ o

*

and the function is at a minimum.

=-
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8. Has y a minimum in

y = x 3
-\- ax?

9. To determine whether y, the following function of a-,

has a maximum, and at what value of x :

i. e,
-H- + ~
l +X * 1+X 2

Here we have no visible expression of a negative term,
but yet, when x is at some greatness, or greater than 1,

the first of the resolved terms on growth of x tends to

increase, and the second always to decrease while x
^&amp;gt; ;

but when x in value lies between zero and J 3 the study
of it will show that the reverse of the above is true of

the first term, therefore there is a probability of a mini

mum. Hence, when the function is at a minimum, the

term about to increase must do that faster than the

other diminishes, so that

^ I

** ^ __ I

2xh+ A 2
) (l-f-

Now disregarding denominators, because they are com-

mon, dividing by A, and using 8 and 8 as before, we
have,
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3 a 2
_^_ X

4
_|_ sfr

&amp;gt;
6 a + 3 A,

3 ^2 _|_ 3.4 __ #/ h
&amp;lt;

6 a; 8 h,

.-. 3 a;
9 + a 4 = 6 JB, .-. x

&amp;gt;
1 and x

&amp;lt;
2.

When A = 0, the denominators become (1 -|- x
2
)
2

.

65. These illustrations have been given in full, to show

what course might be adopted for the solution of many
problems. The following sections will show how the cre

ation of the terms unused, may be dispensed with, by the

use of differentiation.

Another advantage will be found to be the needlessness

of any presumption in advance about maxima or mini

ma as was apparently necessary above. Further, the

successive maxima and minima of the same function will

be beautifully deduced by the principles of differentia

tion.

These illustrations have also been extended to this de

gree, because the deductions are purely algebraic, point

ing out forcibly the necessity of differentiation.

66. Thus far we have struggled for want of the lan

guage of expression, which the principles of differentia

tion are about to supply us, and the mode adopted, of

solution by inequations, will be left as of no further use,

and as likely to be encumbered with insuperable difficul

ties.

Such are the dilemmas into which those who slight the

calculus must find themselves involved, who would nev

ertheless pursue its subjects of investigation, without its

technical methods and language of expression.
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SECTION VI.

DIFFERENTIAL OF A VARIABLE. DIFFERENTIAL OF
A FUNCTION.

67. It may have been seen in the solution of some prob
lems that have been presented that a certain use was made,
of the first one of those appended terms of increase or

decrease, or rather in some cases, first set of terms includ

ing in one all those sub-terms which together are a factor

to A, in composing one term of the function expanded to

express its new consecutive value that first term ap

pended to the function in its primitive state.

Thus if the function of x were

the set of sub-terms that compose one as recognized in the

language of the Binomial Theorem, is

and the one term is

the use referred to, consisted in equating such term with 0.

This made an hypothesis for an inferred value of SB, and an

inferred characteristic for the function, while h became

eliminated when made equal to 0.

68. Such an expression is the differential of the func
tion^ while A, when put at its limit, zero, in value, and called

dxj is the differential of the variable, where d is a symbol,
not a quantity, and never has an isolated position.

The differential of the function would then need to be

symbolized as d (Fx)^ or if y were the function s repre

sentative in amount, we may put dy for d (Fx). The

expression Fx means a function of
x&amp;gt;

hence F is not

separable as a factor.
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(iO. The expression dx has one advantage of zero or 0,

that it designates a relation to x, in contradistinction from

another variable z, or w, which may be associated in the

same expression ;
and from d y.

70. The act of taking the differential of a function is

called Differentiation.

71. When the function we may wish to differentiate, is

of one term, not fractional, and has a power of which the

variable is the root, and the index is a whole positive num

ber, the Binomial Theorem teaches at once that :

72. We should multiply together the index of the power,
the power having its index diminished by one, the constant

factor if there be such, and the differential of the variable.

The product is the differential required.

PROBLEMS.

73. 1. What is the differential of the function &amp;lt;e

2 of the

variable x, the function being equated with y.

Ans. dy= %xdx.
2. Required the differential of bx*-=y.

Ans. dy= % bx^dx.

3. Required the differential of 7 c x 4
y.

Ans. d y= 28 c x 3 d x.

4. Required the differential of 150 x n= y.

Ans. dy= 150 n x n ~ 1 dx.

5. Required the differential of 100 x y.

Ans. dy= 100 dx.

It may be readily inferred that if the function has a term

or terms, in which the variable does not enter, such terms

are constant, and contribute nothing to the differential.

Such term, however, affects the function by supplying a

basis of value common to every value of it.



DIFFERENTIAL OF A FUNCTION. 37

6. Required the differential of 10010 x* -f 5 = y.

Ans. d y= 20020 xdx.

7. Required the differential of a 5 x 2= y.

Ans. dy=. 10 x d x.

74. If we attend to the origin of the numerical coeffi

cients of the second term of the Binomial series (the

units of which are a transfer of those of the index), as well

as to the origin of such index, we perceive that

x 2= x.x and d (#
2
)
= 2xdx= xdx -\-x dx,

x3= x.x .x&quot; and d (x
3
) =3x*dx =

x . x&quot; dx+ x . x&quot; dx + x . x dx&quot;,

where we have placed accents, to denote the source of the

different elements, and the mode by which they would con

tribute to the result, if the quantities x, x
1

,
and x&quot; were not

alike. The condensation takes place because they are pre
sumed to be alike.

8. Let it be required to express in detail as above, the

differential of x 4 or x . x . x&quot;. x&quot; .

9; How then must the differential of such a function of

x as y =; x (x a) be taken if we do not choose to per
form the multiplication ?

Ans. dy= (x d) dx -f- x d (x a).

10. Discover the identity of this answer with the differ

ential of a;
2

ax, which is the above function after multi

plication has been performed.

75. It is then sufficiently evident that to differentiate a

Fx, which is a product of several functions of the same

variable :

We should multiply the differential of each factor by the

product of the otherfactors and add the obtainedproducts

remembering the algebraic meaning of the word add.

4,
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1. Required dy from (a cc
2
) (x 1) rrr y.

Ans. dy=
2. Required d y from (#

3+ a) (3 a
2+ b) == y.

Ans. dy= (15 a
4
-f 3 5 a 2

-)-
6 a x) dx.

3. Required d y from C 2 (x a)
6= y.

Ans. dy= Zx (x a)
6 dx -)- 6 a?

2
(# a)

5 c?x.

In differentiating the function 5 x
t
and finding it to be

5 dx^ we may observe that 5x= x-^-x-{-x-\-x-\-x, and

5dx= dx -\-dx-\-dx-\- dx-\-dx.
It is almost self-evident that if we have such a function

of x as

ax 12

-\-x x^=.y^

and x take an increment dx, y is affected by the several

differentials of the terms which compose y. Hence :

70. To differentiate the one function of a variable, which

is a sum or difference of certain other functions of it; we
must take the differentials of the componentfunctions and
connect them by the signs by which they affect the one

function.

4. Hence the dy of ax 2
-{-x x*= yis

77. To differentiate a function of a variable when it is of

a fractional form.

5. Let _!_=: y.
(*-a)3

For convenience replace the numerator by N&quot; and the

denominator by D, then
N

where D y is a product of two quantities,
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Le,

dNydD
D

replacing the value of y
DdNNdD

dy=

78. Wherefore, the rule for differentiating a fraction is

found to be :

From the Denominator multiplied by the differential of
the Numerator, subtract the Numerator multiplied by the

differential of the Denominator, and divide the remainder

by the secondpower of the Denominator.

Or, by a discovery of an artificial device for aiding the

memory, and simulating the form :

From denom1

by differ -of numer

subtra tf numeral by differen^V of denomwa ,

divide the remainder by (denominator)
2

.

6. Required the differential of y=
acxdx 2 (ax b)cdx

Ans. ay= .

C 2 X 3

79, If the variable does not appear in the denominator

of the function given, it is evident that such denominator,

by taking unity as its own separable numerator, may be

separated from the function as a constant factor. The rule

results in this.

7. What is dy in the case of y= x~= - X ^ s ?
a a

Ans. d=^ xdx.
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8. Required the d y from y= x~ s
;

i. e., -j.

d (-}=- =-Zx-*dx,
\X*J X*

which is in accordance with the rule for positive indexes.

80. Let it be required to differentiate a function of a

variable, which is at once a power with some root of that

power expressed :

9. Let y= x$,

then 2/3 3.2^

, 2xdx 2xdx 2

dy= =-= -
3* Zx\ 3

10. Next let

f*-
4
* , 2 _ _= dx= x * dx.

x* 3

11. Differentiate x n =y,m and n being any whole num

bers, and the fraction positive or negative.

, m ll_i ,

dy= xn dx.
n

m
12. Differentiate x~~~= y.

7 vn, _^_j, 7

dy= x n dx.
n

81. Hence, generally to differentiate a function of a

variable, expressed by the variable at a power denoted by



DIFFERENTIAL OF A FUNCTION. 41

an index, positive or negative, whole or fractional, the

power having, or not having, a constant as factor :

.Bring down that index, with its sign, to be a coefficient

(or a part of it) ; annex any constant which was an ori

ginalfactor ; then the variable, having now its index dimin

ished by unity ; then the differential of the variable / their

continuedproduct is the differential required.

82. But if the function given, and having such exponent,
is not the variable, but some function of it, the above rule

still holds
; using, instead of the word variable, that func

tion of it which is the root, for :

13. What isdi/ m (a x^)^= y?

Using u for a ic
2
,
du= Zxdx,

dy == 4 x (a
2
) dx.

By the above rule the differential of any root is obtained.

14. Required dy from y =. jx-=x*.
d*

83. From the foregoing we infer, that if roots of powers,
or powers of roots, are expressed by fractional or other in

dexes, their differentiation is made plain.

84. But a root affected with such index may be some
function of the variable.

15. Required the differential of y= (a X Q
)?.

Putting u= a # 2
,

.-. du= Qxdx,

7 7/*\ ^ u xd x

4*
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16. Required the differential of the function of
&&amp;gt;

viz.

Ans. dv=
2

17. Required the differential of

(a

SECTION YII.

FIRST DIFFERENTIAL COEFFICIENT.

85, Whenever a differential of a function is obtained, it

will have been seen that the differential of the variable

(d c), is always found to be a factor of it. If now we divide

by this dx, its natural algebraic position is as a denomi

nator to dy ; thus, if we have

d x

and will be an expression in the general form for the
/ X

differential coefficient. The actual quantity for the differ

ential coefficient, in respect to a particular function, will

be that with which -- is equated.d x

86, First Differential Coefficient is the nomenclature of

Leibnitz. First Derivative or First Derived Function is
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by that of Lagrange. If the word first is omitted, and

second or third,, etc., Is not expressed, the first is under

stood. We use the nomenclature of Leibnitz, but men
tion that of Lagrange as in use.

87, Since the value of a ratio is properly expressed as a

quotient and by a fraction, (meaning always by this

some special quantity derived from an actual function) is

the value of the ratio, between the amount of the change
of the function and the corresponding change of the varia

ble
;
more strictly it is the limit of that ratio, as it becomes

when the increment of the variable h is made zero, when

we call it d x.

The dif. coef. of a x 3 = y, is 3 a x^ = d
.

d x

.:dy: dx :: 3 a x* : I
;

that is, : : : X 3 a x 2
: X 1.

88. The expression for a first differential coefficient, in

d y
its general form, is . In a particular function of one va

riable, the y in dy is that particular function, and the x in dx

is the particular variable. The expresssion is, in respect

to its signification for a value, the same as -
(and this

we have already found in algebra may have any value what

soever), with this advantage over -
, that it preserves a refer

ence to its origin, as a means of determining its value.

8$. The value of a fraction of which both the numerator
and denominator is 0, is determined by the disposition of

those quantities each of which may have actually become

0, to emerge from that state
;
then they come into being
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with a ratio, the value of which is determined by their at

tendant factors :

OXa a
thus, = =

;

(c x) a a
or rather,

- =
,

(c x) b b

which we deduce when x has any value, inclusive of x =. c.

90. Let it be required to find the first differential coef

ficient of the following functions of a single variable x,

each standing equated with y as the same value with each

function
;

but severally or disconnectedly, the several

functions being absolutely independent of each other.

1. Given y = 152783 x.

.-.

d
-^ = 152783.
dx

2. Given y = x 3
.

150000

d x 50000

3. Given y=.(bx-\-a) x 5
.

.-.

d
Jt = (6 b x -4- 5 a) x 4

.

d x

4. Given y = (17 a b 1) x + 34 a x*.

. .

d
-? = 17 a b 1 + 68 a x.
dx

5. Given y = a b x 5
(a x -\- b cc

2
)
5
.

/. r= 5 a b x 4 5 (a x + b z 2
)
4
(a + 2 b x).

d x
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6. Given y = (a x -\- b x* c)
2

.

.-.

d
JL = 2 (a x + b x* c) (a + 2 b x).

7. Given y = ^/a x -f- c a;
3

.

sJ, _ ( + 3ca; 2
)c7a; dy _ a + 3 c z 2

8. Given y = (a V + a 2
)
2 + a?

5 _
(
c ^n __

j^s.

9. Given y = (a -f- 5
a;)

a?
3

.

10. Given = .

rfy

da:

- i /T a a;
2

11. Given v= .

b + x

dy (b -\- x)2axax*

12. Given v= .

13. Given y=

,

~
&amp;lt;^x 2 2a
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14. What is the first differential coefficient respectively

of the following (functions of x) = y ?

=y.

Ans. - =
dx 2

A. A/~
15. a -

A d VAns. =
f*

16.
x + VI

dy
Ans. =

VI # 2
(1 +2z VI

17. (aj -J~ ) V ^ ft
2

(# )
2 = y.

c? V
Ans. =

18.

Ans. ? != _ =
rfz 2V*

19.

Ans. =
d x

91. The reciprocal of a differential coefficient of a Fx=
y being evidently in general expression, it may be

found with great facility in a particular case, it being
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necessary, simply, to make the quantity equated with

a denominator of unity ; or, if the dif. coef. is already
d X

in the form of a fraction, to exchange numerator for de-

dy
nominator. Hence, whatever purpose may serve in ref

erence to F x = y, where x is the independent variable,

and the value of the function, i. e., y is the dependent

variable, is subserved by in the case in which y is to be

regarded as the independent variable of the function whose

value is x, the dependent variable.

20. Required in
dy

# V x

-T\.I1S -

SECTION VIII.

USE OF FIRST DIFFERENTIAL COEFFICIENTS.

92, We have shown how a first differential coefficient

of any explicit function of a single variable may be ob

tained, and have deduced a general expression for it, that

dy
is, ,

which is consistent with y assumed as the amount
d x

of the value of the function, with x as the variable, and

with each of their differentials, when made = 0.

The particular differential coefficient is that quantity

with which is found to be equated.d x
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When a first differential coefficient contains the variable

ic, it has a value, when a value is assumed for x. Or, a

value may be assumed for the dif. coef., within the limits

of possible values, which may be equated with the actual

particular dif. coef. and the corresponding value of x
deduced.

This same value of a; referred back to the function, and

x replaced by it, gives us also the corresponding value of

the function, with which such value of the dif. coef.

agrees.

Wherever we mention the singular meaning of the

woftd value, of a variable or a function, let the plural, or

values, be understood in the same connection.

93. When a first dif. coef. consists of several terms

(which we have called sub-terms in their relation to the

binomial theorem), connected by the diverse signs -f- and

,
it must be evident that the resultant sign for the dif.

coef. depends on the value of that variable
; which, indeed,

is true in determining the value of a function.

94. As we have seen, a first dif. coef. may have only

one possible value, i. e., when it does not contain the vari

able. It may also have every conceivable value from co

to -|- co.

95. We shall use, as will be seen, the differentiation of

a dif. coef. for its service, in investigating a dif. coef. as a

derivedfunction.

90. Sometimes, in mathematical investigations, we first

arrive at a quantity, which it is necessary to regard as a

differential, or a dif. coef., in a case when the future object

of search is for its function which we have not possessed ;

this search, when generalized for every possible case, may
be very elaborate, and is denominated the Integral Cal

culus.
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97, We ought, in a previous section, to have observed,

in the study of functions in connection with their vari

ables, that we have four conditions to regard with respect

to positive and negative values.

1. The function may be positive in value, while the

variable is positive, thus : -[-^X -\- x ax.

2. The function may be positive in value while the va

riable is negative, thus : ( #)
2= a?

2 or a X x= ax.

3. The function may be negative in value while the va

riable is positive, thus : (
a X + x) = ax, or (-}- x)

= x.

4. The function may be negative in value while the va-

riable is negative, thus : ( X #) = & x.

If, under the 3d head, we should have given as an illus

tration x 3 =
(-)- se . -[- 35 . -f- ce), we remark that the

sign is the sign that indicates how the amount a?
3 is to

be applied as a value for the function
;

it is not the sign

of the individual x.

Since x alone is by no definition excluded from being a

function of x, it seems singular that x as a function con

tains -f- x nevertheless as a variable. But in such use the

negative sign is applied to x only for its value as a func

tion. Thus, if x be the function which is also y, we

have,

y = x,

that is, y = -\- x ;

so that the indication of x as a function is, that the

function has a negative value to the extent of -\-x.

It is then superfluous to remark, that it becomes unne

cessary to use such language as, a function of x, or

F ( x), but rather, a function of -f- x, F (-|- x) ;
i. e., Fx

5
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with reference sometimes, as it may be, to negative values

of x in it.

PROBLEMS.

1. Required the value of x when it is increasing ^ as

fast as 27 x -f 3 x*. Ans. 3.

2. Required the value of x when it is increasing 1000000
2999999

times as fast as 27 x -f- 3 x 2
. Ans. 4

6QOOOOQ
-

A quantity is considered to be increasing when it is

becoming a smaller negative one.

3. To determine the value of x when it is one and the

same variable in x^ and a?
3
,
at the values of these func

tions when they are increasing with equal rapidity. Call

ing a?
2 = y and x 3

y\ we have,

! = * = 2* = 8x,
dx dx

4. Suppose the Boston and Maine Railroad running
north from Boston, and the Old Colony and Fall River

Railroad running south from Boston, to be one continuous

north and south railroad passing through Boston, and

Worcester to be 40 miles west of Boston. The cars on

one of these roads, being 30 miles from Boston, are running
south at 23 miles an hour

;
how fast are they affecting their

distance from Worcester ?

Let x = the distance of the cars from Boston in miles.

2 is the distance from Worcester, which call y.

dx
&quot;

(402+2:2)*
&quot;

x being = 30.
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Now, if x vary 23 times the natural x as related to y, y
will vary 23 X | = 13f .

Ans. dr 13J miles. The positive answer being adapted
to increase of distance from W., the cars being south

of B.

The ambiguous answer is adapted to each of the rail

roads, the direction of the motion being the same.

5. At the point where the cars, running north 32 miles

per hour, are affecting their distance from Worcester 18

miles per hour, how far are they from Boston ?

d y 32 a;

Here,
-

1 = 18,dx (402 -f 2)
*

and x 22.7 miles.

6. A farmer is raising 1000 swine, which, on their attain

ing a certain weight, estimated here by their pork, he in

tends to slaughter and pack in casks, in connection with

2000 pounds of other pork, which is already stored in

waiting ;
the cooper, without much consideration, had

contracted to make the casks, each so as to contain one

animal and 60 pounds more
;
but the farmer has not de

cided at what weight of growth to slaughter them. How
heavy is one when, allowing it afterwards to grow, the

growth will be at the rate of one pound, while the number

of casks required changes one cask ? and will it be increase

or decrease of the number of casks ?

Ans. Between 180 and 181 pounds; casks to increase.

7. Examine y, ?/ ,
and

y&quot;
in these three functions of #,

and determine which never increases and which never de

creases at positive values of x
;
and vice versa with negative

values of x
;
and which never changes at either positive or

negative values of x, and simplify the form of one of them,
and possibly eliminate x.

33 x + 2000
o. ii = .9

a; + 60
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33^+2000
9.

10.

z + 60

34 x + 2000

a; + 60

11. Does one of the above expressions, and which, fail

to be a function of ar,
in such *ense that the change of x

produces any effect on the value of the expression, which

is to fail entirely ?

12. A man having 4320 dollars, purchased a horse, and

with the remainder of his money purchased sheep, at such

rate, that the money expended for a horse would buy as

many sheep as they were worth dollars apiece. How,
with the preservation of this relation, would the number

of sheep purchased, tend to vary, compared with the num
ber of dollars paid for the horse, if he pays for him 36 dol

lars, while in the contemplation of paying a greater sum
than that ?

Ans. The number of sheep will diminish lOyg^ times

as much of a sheep as of a dollar more that should

be paid for a horse, or at the rate of lOyf^ sheep for

one dollar additional paid for a horse.

When a coefficient has the ambiguous sign, we are

often able, as here, to prefer one to the other from positive

knowledge. The cost of a sheep is not to be supposed a

negative sum of dollars.

13. A boy was holding by a cord in his hand a horse,

the cord attached at the horse s mouth and held upon the

level ground, thus permitting the horse to eat the grass

upon a circle of ground; but having given the animal 90

feet, he commences drawing the cord in at the rate of 3

feet per second. How many square feet per second was the

circular plot of grass diminishing? that plot which the con

ditions allow the animal, if he were sufficiently active to

avail himself of it.
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14. The boy begins to climb a tree 5 inches per second,

and to let out cord 4 inches per second. How fast per
second is the horse s circle changing in square feet, when
the boy gets 10 fedt high and has let out 70 feet of cord?

15. While climbing as above, and when 10 feet high,
how fast should he pay out cord that the circle may re

main stationary ?

16. A ship is sailing north-west at 15 miles an hour; at

what rate is she gaining in north latitude per hour ?

Ans. 10.601 miles.

17. On the discharging of coal from a vessel, it is raised

high in the air and thrown down into heaps, which may be

cones. On one occasion, the height of the heap was

always f of the diameter of the base
;
when its height was

15 feet, and the solid contents were increasing at the rate

of 160 cubic feet per hour, how fast per hour was the

height increasing ?

18. How fast per hour was the height increasing when
it had become 32 feet high, the conic heap gaining 160

cubic feet per hour, and being always a similar heap ?

19. A boy, amusing himself by throwing stones into a

pond of still water, to see the circle of waves expand, per
ceived that the diameter of one circle increased 3 feet per
second when it had become 24 feet in diameter; how fast

was the area increasing in square feet at that instant ?

20. It is required to divide 70 into two such parts, that

the suggestion of increasing one part afterwards at the

expense of the other, would implicate an increase of their

product 40 times as fast as that one part should increase.

Ans. 15 and 55
;
the 15 to increase.

21. At a pin factory, a certain number of pins are stuck

in a row in the papers ;
3 more than that number of rows

are put in a paper, and one less than that same number of

papers are put in a package. It being suggested to di

minish the number of pins in a row, how does that qualify



54 DIFFERENTIAL CALCULUS.

the change of the number in a package, while there hap
pens to be 16 in a row?

There is this disability in this problem : the idea of frac

tional pin cannot be entertained, and the change of an

entire pin cuts off the application of the principle of

the initial ratio. Those quantities, a part of which can

be practically considered as of the same nature as the

whole, are best adapted to investigation and study by the

calculus.

The disability is not mathematical, but concerns that

practical economy by which events and things are sub

mitted to calculation.

22. Some boys rolling a spherical ball of snow, ob

served that when it was 28 inches in diameter, it was

increasing in diameter 5 inches per minute
;
how many

cubic inches per minute were its solid contents increas

ing?
23. A certain cook adopted 200 handfuls and 300

ounces of flour, to be made into cakes, of of such hand

ful each; if this would make 1840 cakes, what disposition

had the number of cakes to vary, if the number of ounces

in a handful were diminished the least amount.

Ans. Cakes increase in number at the rate of 24 to the

first ounce that should be diminished from the hand

ful, the weight of the cake of course diminishing.

24. A glazier prepared a quantity of putty sufficient to

set 100 panes of glass, with an excess of 180 ounces; but

at this stage, receiving orders to set glass of such size of

pane as to require per pane more putty than his first esti

mate, it is required to determine how the number of

panes, which he may be able to set with the whole of the

putty, will vary with the increase of the number of ounces

requisite for one pane : 1st, to determine this by a general

expression ;
and 2d, what the amount of the ratio is, in the



ILLUSTRATIONS BY PROBLEMS. 55

particular case, when he was to use 3 ounces in setting

his first panes.

2d Ans. Panes diminish 20 times as fast in number as the

putty per pane increases per ounce, i. e., while 3 oz.

suffice per pane in the first estimate.

25. Will y, or the sum of the following quotients, in

crease or decrease, when 7 is replaced by a numerical

quantity just larger, y being a function of 7
; 7 temporarily

supplying the place of x ?

25 . 7

26. A person, thinking to propound a puzzle, said he

was in the habit of purchasing the article A, at the rate

of one dollar per ounce, and on each such occasion, of pur

chasing also the article B, paying the same amount of

money for the whole of the article B as for the whole of

A. Now, on every occasion of these two associated pur
chases, the weight of the amount purchased of A, added
to that of .2?, made 20 ounces. But it is not intended that

on all occasions the weights ofA were the same, but that

they varied indefinitely. On the occasion when he may
have purchased 3 ounces of A, if we proceed to consider

the occasion when he may have purchased any the least

more of A, it is required to determine how we are to find

the price per ounce of B to change between the corre

sponding occasions.

Ans. Number of ounces ofA to increase Tf as fast as

the price in dollars ofB per ounce.

27. It is required to determine the price per ounce of

the article B, on an occasion when, on comparing the

price with that of the same article on another occasion, in

passing to which there may have been an increase, the

least possible, in price, the corresponding increase in the

amount of A purchased must have been equal to it
;
the
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ounces of the A and the dollars per ounce of 13 being com

pared numerically in units. Ans. 3 ry?y dolls.

28. There are two numerical quantities, x and y, and

they are such that 5000 times x plus 3 times y, are always

equal to 200 times x times y. It is required to determine

if x can have the value 1500, in which case it is required
to determine the corresponding value of y.

Ans.
2/
= 25^f^T.

29. It is required to determine how x and y, at the above

values, are disposed to change their values.

Ans. y will be disposed to diminish ?ouu^E8i7TyF as

as x to increase.

SECTION IX.

SUCCESSIVE DIFFERENTIATION. SECOND, THIRD, ETC.,

DIFFERENTIALS.

98, When a first differential coefficient contains the

variable, it is evidently a function of it, calledfirst derived

function. When the variable x of the primitive function

varies, the differential coefficient will itself vary. Hence

those suppositions in some problems, where a differential

coefficient contains cc, and is supposed or inferred to have a

value, give correct results only for an exactly specified, or

exactly inferable, value of a?, and of the function.

Where a certain rate has been inferred for the cars to

affect their distance from Worcester, as at so many miles

per hour, the execution of it could not take place during
a minute or an entire rod. The supposition and the infer

ence are good for only an instant of time, and at a point

only in place ;
at the succeeding instant of place and time,
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the differential coefficient has changed, the distance from

Worcester has changed, and the rate of the changing of

that distance has changed. (Page 50, Prob. 4.)

What is more natural, then, than to employ the same

means in determining the general character of the derived

function, that we already partially have, in regard to the

primitive differentiate it? and why not, perhaps, continue

to differentiate the second derived function, or second dif

ferential coefficient ?

Let it be required to differentiate successively y= 15 a?
3
,

and while doing it, to evolve the notation for these acts
;

and for the results

we have y = 15 # 3
,

,.!&amp;gt;: = 45 ,

dx

i. e., Xdy = tt&amp;gt;x^

dx

where is a factor in the notation
, and should be sup-

d x dx

posed constant, not only because we are able, in case of a

fraction which is to change its value, to throw that change

entirely into the numerator or denominator at will
;
but

because we set out in this case with a function y, which

would change if x did, and we suppose x to change by an

amount which we can exactly define, h or d #, with the ex

pectation of throwing all quantity that must have any other

nature than an exact and certain one, which may be arbi

trarily made uniform, upon the change of y. Hence, dif

ferentiating 45 a; 2
,
and expressing that of its equal in the

notation, we have

X
d x

We evidently can, and ought to, assume the independent
variable to vary uniformly, thus allowing the results to be
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all made manifest in the value of the function which

depends upon it.

If now we agree, as is the custom, to represent d (d y)

the differential of the first differential of y by d* y, where

the 2 does not signify a power, but the second act of dif

ferentiation, we shall have

-1 X d* y 90 x dx and^ = 90 as,
dx dx 2

where d cc
2 is by proper algebraic act the second power of

dx, and is not the same as d (
2
).

In a similar manner may third, fourth, and more differ

entiations be performed on a function that admits of them,

and the notation - and -
etc., be derived.

dx 3 dx^
In the last function, viz., 15 x 3

,

1 =90,^= 0, etc.
dx 3 dx*

Hence, differentiations will terminate of functions in

which the variable appears at a power denoted by a whole

and positive index, and when the function is not of a

fractional form, the variable in a denominator. In such

cases differentiation may never terminate.

1. Differentiate, successively, 6 # 3 5 a;
2
-[-60 x = y.

d
-?- 18 a;

2 10 x + 60,^ = 36 x 10
;dx dx*

i. e.,
-L X d* y = 36 x 10,

= 36,^ =
dx* dx*
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2. Differentiate (a x) *J~x+ V17 0, a .F (a, y)= ;

i. e., a function of x and y = 0.

3. Given 4 w 2 + w = y, in which u is this Fx, viz., w=
3 a 2

, to find .

d x 2

d 2 y
4. Required

~ in 6 z 3 5 a;
2 + 60 x + 10 == y.

Ans. 36 x 10.

5. When the sub-terms are reduced to a resultant term,
what is the sign of 36 x 10 when x

&amp;gt;
3 ? When

*&amp;lt;i?

6. Given 28 aj y
2= 0, to findFx= y,

d
and .

dz dz 2

Ans. = x ~28 - = ~28

a 2 d 2 v
7. Given a;

2 + (2 b x a 2
)
= y, to find -~,

Ans. 2(l f, I
* \

8. Given 24 a;
2

y
3 + 10 x = 0, to find .

9. Given a;
6 2 a; 3 y + y

2
a;
2 =r= 0, to find

d *
y

Ans. 6 x.

10. Given 4 c 2 -rccr=rs, and 3 2 2 -|~2s= y, to find -.
d x 2

The following analogy is worthy of note : If we take the

third powers of the natural numbers 1, 2, 3, etc., and then
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their differences, and then the differences of these differ

ences, and so on, we have

1 8 27 64 125 216 343, etc.,

1 7 19 37 61 91 127, etc.,

6 12 18 24 30 36, etc.,6666 6, etc.,

0000, etc.

If we take y = x 3 and differentiate, we have

dx*

dx

dx*

If a first dif. coef. for any determining reason has the

value 0, we may determine what the function is about to

do, in regard to increase or decrease, by the sign of the

second dif. coef., which is an important principle. If the

second dif. coef. = 0, we determine it by the sign of the

third, and so on.

The reason why a dif. coef. may have the value 0, is ow

ing to an aggregate of sub-terms with different signs, which

may compose it, and a particular value of the variable also

supposed. Or if there be but one term, and it contain the

variable as a factor, it = when x = 0.
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The process of successive differentiations may terminate,

or never
;
some fractional forms are of the latter character,

as well as those with negative and fractional indexes.

Differential coefficients may change their signs as the

variable is traced through successive values. Of course

the general form of notation cannot show this. Particular

values of the variable determine this change of sign.

When a dif. coef. does not contain the variable, it may
not have the value zero.

To determine whether a dif. coef. can have the value

zero, we equate it with zero and reduce the equation.

SECTION X.

TAYLOR S THEOREM.

99, It is the purpose of Taylor s Theorem to lay down,
in a general expression, in the form of a series, when this

is possible, the different orders of differential coefficients,

with their signs and necessary factors attached, according
to which (primarily) a function of a single variable is de

veloped, with an increment or decrement to the variable,

and in the order of the increase of the integral powers of

the increment or decrement, by the natural series of

numbers.

Let y = F x and Y= F (x -\- h\ and assume

Y= y + Ah + Bh* + Ch* +, etc.,

where A, .Z?, (7, etc., are
&quot;quantities

which x or constants

can express, and which are now wanted to replace A, ,

(7, etc., with.

6
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Remembering that x -|- h is the new variable, and that

we can ascribe a new variation of x -(- h to either x or h

at pleasure, while the other of the two will be constant, we

have, by differentiating, first, with respect to A,

= -4 + 2.Z?fc + 3 &amp;lt;7A
2 +, etc.;

/ h

next, with respect to x,

d T dy . d A , . d B d C ,=
-f- ^ + A 2 + A 3 +, etc.

rfa; d x d x d x d x

But the differential coefficients of like powers of h are

identical, because the same thing has been differentiated in

each case.

A d y T&amp;gt;

dA n dB
Hence, A = -^-, J3= , C7= -- ;

dx Idx 3dx

thatis, A = -
9 B=-.-, C=-.-JL,eto.

dx dx 2 2 dx 3 2.3

Hence we have Taylor s Theorem,

.

rf* 1 rfa: 2 1.2 rfa;3 1.2.3

If A be negative in the original F (x -\- A), the signs of

the terms having the odd powers of h will be negative, in

general expression, but such terms may have & particular

positive value.

1. Place F x= y, namely, 15 x -\- x*2 y, into Taylor s

Theorem, or as it will be when x becomes x -j- h.

Ans.

-+(2)

2. Place this F x = y in Taylor s Theorem, viz. :
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5 + 19 a;
2 3 x* = y.

(38 18 ) + ( 18)
h *

1.2 1.2.3

where, on account of the factors A, etc., no term but the

first has actual greatness when h = 0, but an initial or

relative greatness. Now, since multiplying a function or a

coefficient by a constant, does not aifect the greatness of

the variable in its relation to any laws or principles of

change in the function or coefficient, or to its sign in the

resultant of a term, we are able, for most practical purposes,

to dispense with the factors , , etc., in the use of this

theorem. And it is in this sense that we may have made
an implied use of the theorem without a formal demonstra

tion. The coefficients as factors of each term have, how

ever, in themselves real amounts.

In noticing the example above, we might hesitate about

the significance of -f- ( 18), but it is of course = 18
;

hence an important notice that the plus of a general nota

tion may be reversed by special considerations. In the

d i/ d ^ v_ and above, i. e., in their equivalent in the particulardx dx 2

quantities, the actual sign of the resultant of a term cannot

be known without hypothesis for the value of x9 although
the notation gives -)- before the general term.

3. Place (a x)
3= y, in Taylor s Theorem, in its state

which has just been passed by in consequence of the last

growth of x. Making h the decrement :

F(x-h) =
&quot;

I
&quot;\&quot;T

&amp;lt;.

a
i.j 1.2.3
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4. Do the same with x 5 = y.

5. Do the same with x 3 = y.

6. Present, in Taylor s Theorem, the variable taking an

increment, some terms of the function of ic, viz. :

7. Present, in Taylor s Theorem, a few terms of
^

= y.

8. The same required of - = y.

Taylor s Theorem has failing cases.

100. Says Professor Playfair:

&quot;A single analytical formula in his (Brook Taylor s)

Method of Increments has conferred a celebrity on its

author which the most voluminous works have not often

been able to bestow. It is known by the name of Taylor s

Theorem, and expresses the value of a variable quantity in

terms of the successive orders of increments.

If any one proposition can be said to comprehend in it a

whole science it is this, for from it almost every truth and

every method of the new analysis may be deduced. It is

difficult to say whether Taylor s Theorem does the most

credit to the genius of its author or the power of the lan

guage which is capable of concentrating such a vast body
of knowledge in a single expression. This Theorem was

first published in 1715.&quot;
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SECTION XI.

THEORY OF MAXIMA AND MINIMA.

101, The most marked characteristic of a function,

whether of one or more variables, is a maximum or minimum
value of it

;
it is so marked as at once to arrest earnest

attention
;
but yet, it is only an incidental or particular

condition among its general values, or in its general na

ture.

102, A function is at a maximum value, or, in abridged

language, is at a maximum, when it has such value as will

be diminished in its nearest and earliest change, if the

variable, having the value answering to that condition, be

either increased or diminished the least amount
;
so that

we must have

Fx&amp;gt; F (x + h),

and Fx^&amp;gt;F(x h\

103, A function is at a minimum when it has such value

as will be increased in its earliest and nearest change, if

the variable be either increased or diminished the least

amount
; so that we have

and

Here we may observe that we have in

F(x- h\

Fx,

and F (x + h),

6*
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three values of a function indicated in an indeterminately
close rank of succession, and that

x A,

and x -)- A,

are the same and corresponding values of the variable.

We are referring to but one function, in the use of the

expressions F (x A), F x, and F (x -f- A), and since we

speak of F x as at a fixed value, we should rather say
F (a A), F a,F (a -|- A), meaning thereby three values

of a function of a single variable, such as belongs to it for

x = a A, then x = a, then x = a -f- A ;
but in this we

are using a varying x. NowF (x A), F #,F (x -\- A),

are abbreviated modes of asserting the same thing, with a

now fixed or unvarying x.

With the above explanation, we use se, etc., instead of a,

etc., for the better preservation of associations connected

with Taylor s Theorem. By this theorem we have the

general developments or expansions for F (x A) and

f (x -j- A) ;
between which, however, we will arrange F x

as an intermediate condition, with the value y ; they are,

, eta.
dx 1 dz 2 1.2 dx* 1.2.3

2. Fx = y.

3. F (x + A) ==

+ **.*+*_*. J^ + *!*._^-+,etc.1 d* 1 dx 2 1.2 da: 3 1.2.3

Now since, as in the case of the Binomial Theorem (60),
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to which the above are similar in respect to being series

with the powers of A ascending, h may be taken so small

that the first or any term having h as factor, must be

greater than the sum of all succeeding terms, such term

may be reasoned upon as in itself determining whether y
is indicated as increased or as diminished by that same any

term, and all its sequel, without our paying any regard to

terms succeeding such one.

Concerning the factors of the several successive dif.

h z h 3

coefs., viz.: A, ,
-

, etc., we may remark, that since

h itself is supposed to be indeterminately small, we need

not, in reference to the purpose answered by A, A 2
, etc., be

solicitous about any differences between them, nor whether

either have as a divisor 1, or 2, or 6, or 24, etc.

If, then, Fx &amp;gt;
F (x h) and Fx

&amp;gt;
F (a+ rt), as in

the case of F x = max., then neither -- . - nor
d 7

d x \

-|
-- - - can indicate increase, which they would not do

d x 1

if these dif. coefs. were = 0, for then their signs become
of no force.

Now we may be able to find the value a?, if it has one,

which verifies the following equation

dx

Our general formulas, then, when = 0, after eliminat
ed X

ing this dif. coef., become,

dx* 1.2 dx* 1.2.3

5. Fx = y.

6.
dx* 1.2 dx* 1.2.3
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d z yNow it is evident that if F x = a max., must be
d x 2

negative, because there ought not to be indicated or real

ized any increase of y, in equations 4 and 6, F x or y being

by supposition the greater. If we test this second dif.

coef. by applying to it the value or values of x already

found, and find that it is negative, we shall already have

verified a maximum for F x.

This second dif. coef., or any other, may have a particular

value, the reverse of its sign by general notation, for its

value must depend on that of #, and consequently the lia

bility must be incurred of its value passing through zero,

the sub-terms of such dif. coef. having of themselves -|- or

signs.

d*y
If, nevertheless, we find this - - to be positive, as it

d c 2

should be in case Fx is a minimum, when of course

F x
&amp;lt;

F (x h) and F x
&amp;lt;
F (x A), then we have

verified a minimum for F x.

But the case may occur when, after verifying its value,

we must find

dx*

in such case we find the following to be expressive of this

condition :

7.

d 3
y A 3

. d*y h*

. .

y -L. _ .
--L

.
1 dx 3 1.2.3 dx* 1.2.3.4
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Now it is evident that F x cannot be a maximum or

d*y d 3 y
a minimum unless and + - - have the same sign,

d x 3 d x 3

i. e., concur in indicating decrease of y in case of a maxi

mum, or increase in* case of a minimum, and they cannot

concur unless each = 0, and then no amount is indicated
;

so this third dif. coef. becomes eliminated, and we proceed to

d* y d 2
y- with the same remark with which we approached

dx* dx*
and should approach all even dif. coefs.

104. In order, then, to determine the value or values of x,

which render any proposedfunction a maximum or mini

mum, we must deduce the value or values of xfrom putting

= 0, and substitute such value or values successively in
d x

the succeeding dif. coefs., until we arrive at one which does

not vanish, i. e., become zero / if this one be the %d, 5th,

1th, 9th, etc., the value we have found will not render the

function either a maximum or minimum / but if the dif.

coef. not vanishing, be the 2d, ^th, 6th, etc., it will ; the

function being at a maximum if the dif. coef. proves

negative ; at a minimum if it proves positive.

105. Since the variable may be found to have more than

one value deduced from 0, the function may have
d x

more than one maximum, or more than one minimum, or

any number of each : in which case, if the function is con

tinuous, they may alternate in consecutiveness. In such

case a maximum may be found for one value of x, and a

minimum for another value of it.

106. It is obvious, on reflection, that when a constant is

common to every term of a function as factor, such factor

may be disregarded, in determining the value of tc, at

which a maximum or minimum occurs.
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The following considerations are obvious and important
in abridging the method of finding maxima and minima :

107. Radical signs and indexes, affecting collectively

every term of a function, may be disregarded.

108. There is no maximum or minimum of the function

when x is infinite, because it has no succeeding value, nor

when y is infinite, because it cannot be diminished by a

finite quantity.

In an early section of this treatise, the rationale ofmaxima

and minima was the most inductively demonstrated, with

reference to selected functions; but there remained the

advantages of formal instead of virtual differentiation, and

the use of its nomenclature, to be pointed out in this sec

tion, if we would aim at the most explicit rules.

109. A variable a*, on which a function y depends, may
have its own maxima and minima, which may be found

without the necessity of determining what F y a; by
deducing the value of x from the reciprocal of the first dif.

coef. of the function put = 0, or from the first dif. coef.

put = co.

110. When a function is of a fractional form, and has

its variable only in its denominator, it is evident that the

maximum value of the function corresponds with a mini

mum value of the denominator considered as a certain

other function, and vice versa.

111. If the function is fractional in form, and the de

nominator constant, it is evident that the reciprocal of that

denominator is the constant factor to the numerator.

Hence, such a product is greatest when its variable factor

is greatest, or the numerator alone.

112. When a dif. coef. is in the form of a fraction, it is

evident that it must have the value zero, when its nurnera-
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tor has that value, if at the same time its denominator does

not also reduce to the value zero.

113, Since it is always necessary to know the sign of a

denominator in determining the value of a fraction, we may
remark that when the denominator of a dif. coef. is an un

disturbed second or greater even power, that denominator

is always positive.

PROBLEMS.

Place, in Taylor s Theorem, this function of a single

variable tc, namely, 10 x x 2 = y, first with an incre-

h h*

ment, second with a decrement, , , etc., being under

stood as successive factors of each term after the first.

F (x + h) = (10 x x 2) + (10 2 x) + ( 2) + ;

F (x h) (10 x x*) (10 2 x) + ( 2) ;

also, F x (10 x # 2
) 0.

Now if F x is at a maximum or minimum, or first say
if it is at a maximum, then neither -\- (10 2

a?)
nor

(10 2 x) can indicate increase of it
;

which they
would not do if 10 = 2 x, or what is the general state-

dy
ment (by the notation of the theorem) if = 0.

J2 ^ &quot;^

Now the -
being 2 in both cases, it intimates de-

d x 2

crease in both cases, when itsfactor is allowed the same or

as real a suggestion of being something as is suggested for

the presumed change of the function s value.

Examine, as above, x% 10 a? for indications whether

it has a maximum or minimum.
d z y

But might contain the variable and vanish, L e.,

equal 0.
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rf 3 y
In such cases takes the place in the continued reason-

d ^ *u

ing of the first, and takes the place of the second,

and so on.

114, It is required to determine at what value or values

of x, and of y, the following (functions of x) r=r y have

maxima or minima, if they have such.

1. y 25 x x 2
. Ans. y a max. when x =

And when y =
2. y = a x -\- b x 3

. Ans.

3. y = X Q x. Ans. y = min. when x =
And when y =

4. y = 3
x*-\-t&amp;gt;.

Ans.

5. y = a?
2

. Ans. cc = min. when a; = 0.

And when y = 0.

6. y == 3 a 3 54 a;
2
-f 315 x + 5000.

Ans. y = max. when cc = 5, y being = 5600.

zr min. when cc = 7, y being = 5588.

7. v = ^ . Ans.
a;

2 -^*
2

8. y r= jc
2 X (b x). Ans. y= max. when x= b.

3

9. y= X 2 ^ax x*.
a

. 3
Ans. y = max. when x = a.

4

And when y =
10. y = 6 as a 2

. Ans. y = max. when a; =
And when y =

* 4* 3 + 2a A ns&amp;lt; y = min. when x = a*.

5 x 2 And when y = f X #*

12. y = 60 + x 3 3 a x* -)- 3 a 2
aj a 3

.

dy d 3
y

In this instance, if =0,x= a, but when x==a, ,=0,
da; ax*
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d 3 y d 3 y
and = 6, and -I == 4- 6

;
so that, since there

d x 3 d x *

is not a concurrence of the values of the third dif. coef. in

sign, and this third dif. coef. cannot = in accordance

with the rule which is here sustained, there can be no

maximum nor minimum.

13. y = (x a)
4

. Ans.

14. y = (x a b c)
2n

,
n being a whole number.

Ans.

15. y = (b a;)
2n +

*, n being a whole number.

Ans.

16. y=(b x)
5

. Ans.

17. y= b+(x-a)*.
This is a case of an exception to the rule, for all the dif. coefs.

become infinite when x = a, and y is then = b. There is

a maximum when x = a, because F x
&amp;gt;
F (x h) and

F x
^&amp;gt;
F (x + 7t), which may be verified by algebraic

methods, because Taylor s Theorem fails. But if the ex

ponent be greater than 1, and less than 2, and its denomi

nator odd, will not be infinite in a function of which the
d x

root is x a, at the value of x = a, but there will not be

a maximum or minimum becau

nary for its negative sign ;
as in

18. y = 6 +(^ 0)4;

where y has no max. or min.

19. (a.) How great can y = 8 x a?
2 be?

Ans.

(b.) How small can y = 80 + a 2 10 x be ?

Ans.

(c.) What is the value of x if we put y = y ?

Ans. Imaginary.
7

a maximum or minimum because becomes imasi-
dx* &
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Can we then, indiscriminately, by hypothesis, make any
two functions of the same variable equal to each other

;

that is, their difference = ?

20. Has the variable x a minimum in y =.
(ce

2 a 2
) ?

Ans.

21. y = (ax x*)-
1
.

22. y = 20 + (6 x) *.

23. How great is x while positive, and y is increasing
the fastest in

2/:=30a: + 180 x* 20 tc
3 ?

Make a maximum, or = 0, and determine x.

24. y = (x a)
5

.

25. y = (x b)s.

26. y= x 1 7 cx* + 21c*x 5 35 c 3
cc

4+ 35 c 4 ^ 3

21 cs x* + 7 ce x + 175 a b.

27. y = (x -}- a)
6

. Ans. A minimum when x= a.

28. y^^ + c)?.

The above functions are offered to bring into use and to

verify more of the conditions of the demonstration with

regard to dif. coefs. after the second, than is commonly re

quired. They will show the utility of Taylor s Theorem,
as the foundation of the demonstration, to be remarkable.
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SECTION XII.

PROBLEMS FURNISHING EXPLICIT FUNCTIONS OF ONE
VARIABLE ; FOR DETERMINING THEIR MAXIMA AND
MINIMA.

115. This section will present a collection of problems.
It is not to be expected that every value of a function or

variable, which may be algebraically determined, can have

a rendering or practical use within the conditions of any

problem ;
or that the conditions and elements of the prob

lem can be restated for accommodation of all such alge

braically determined results. In articles 6 and 7 we found

that this is not possible ;
we shall have repeated occasions

to verify the same impossibility.

Of the four conditions of value for a function in rela

tion to those of the variable mentioned in article 97, we
shall find that generally not more than one is available for

any significance within the conditions of the practical

economy of such problems ;
but occasionally two are.

1. (a.) The present problem is a common algebraic one :

A and J5 set out from two towns, distant 247 miles from

each other, and travelled the direct road till they met. A
went 9 miles a day, and the number of days at the end of

which they met, increased by the number of miles B went

per day, was 31. Required the number of miles B went a

day. Ans. 23.36 miles, or 1.36 miles.

Here the negative result must be rejected, for although
it might be executed as miles, it evidently could not as

days.
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(&.) The same problem as for the calculus : A and J? set

out from two towns, distant 247 miles from each other, and

travelled the direct road till they met. A went 9 miles a

day, and the number of days, at the end of which they

met, increased by the number of miles 1$ went a day,

was the least possible, on the conditions. Required the

number of miles B went a day. Ans. 6^.
(c.) Required the number of days at the end of which

they met, increased by the number of miles went a day,
as by the last condition. Ans. 15.65.

2. A certain company at a tavern had a reckoning of

143 shillings to pay, but 4 of the number being so un

generous as to slip away without paying, the remainder

settled the bill after the landlord had thrown off 10 shil

lings from the amount, and it W as found that the original

company was such, or within a fraction of such, that a

payer s portion was increased the greatest amount it could

be for any number for the original company, greater than

four. Required the number as diminished by any such

fractional man.

3. (a.) A man, F, is one of a crew of a returned fleet

of fishing vessels, which are the same in number as the

men of the like crews of each vessel
;
and he receives his

equal share of 960 dollars of bounty money. His own
crew with himself expend 24 dollars for dining together.
It is required to adjust the number of men to a crew, for

the condition that, by this receipt and disbursement,F finds

the least money left as his own.

Ans. 80 men
;
F pays 15 cents more than his share of

the bounty.

(b.) It is required to adjust the number of men for a

crew for the condition that the bounty money should just

pay F and his companions, if he had any, for their dinner ;

also required the price of the dinner to F for this condi

tion.
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(c.) It is required to describe the fleet in number of men
and vessels, if it may be called a fleet, for the condition

that F, after paying for the dinner, conies off with 936

dollars.

4. A certain pin factory has on hand ready for sale, ex

cept in the packing, 3,200,000 rows of pins as they are

commonly stuck in papers. From these pins 100 boxes

are to be made up, if possible, for sending away, each box

containing packages, each package containing papers, and

each paper rows, each row pins, the same number. Now
the number of individual pins not included in this lot was

the greatest possible. Required the entire number made
;

the number to be sent away, the number that will remain,

and the number in a row.

Ans. In part, 64,000,000 ;
20 in a row.

5. Required the numerical quantity which exceeds its

second power the most. Ans. ^.

6. Required the numerical quantity of which twice the

second power exceeds thrice its third power the most.

Ans. f.

7. Two vessels, A and B, were freighted each with 500

or a tons of coal. On the passage, the vessel A having

sprung a leak, a certain number of tons were transferred

from A to B
;
both cargoes were sold for one 35th (one

&amp;gt;th)
as many dollars per ton as there were tons so trans

ferred. Now the mutual product of the number of dollars

of the proceeds of the two unequal cargoes was the

greatest possible. Required the number of tons trans

ferred. Ans. 353 -J- tons.

The function of the variable which is put at the maxi

mum is

and it will be seen that b exercises no power in determining x.
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8. A speculator expended 900 dollars in the purchase of

animals at an equal price each. After including with this

lot 15 other animals purchased at the same cost each, at a

subsequent time, he sold all for 1150 dollars, at equal rates

each, when he found that he had gained the greatest possi
ble profit on each animal. Required how many at first

were purchased, and the profit on each.

Let x = number purchased,

and y= dollars profit on each.

1150 900 _
&quot;

x + 15 ~x

250 x 13500

X* -f-15 x 250

Ans. y and y
1 are at a maximum at the same value of cc,

viz., x = 115.4, the number of animals required.

9. Required the area and each side of the greatest right

angled triangle which has the sum of its hypothenuse and

base 18 inches.

10. Required how a rectangle must be restricted when
it contains the greatest area for a constant sum of the four

sides. Ans. It must be a square.

11. Required the sides severally of the largest right

angled triangle of which the perimeter is 22 in any units

of length.

12. (a.) A certain reservoir, containing an unspecified

quantity of water, is receiving 153 casks of water per day;

9|- times that cask full is distributed per day, to each of

as many families as the cask holds gallons. This state of

receipt and distribution is continued 45 times as many days
as the measure holds gallons. How many gallons did
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the cask contain, in case it was known that the reservoir

gained and retained the most water possible.

Ans. 11 75^ galls.

(b.) If the cask is supposed to be of some size, and then

to grow larger, in the play of many suppositions, how great

is it when, increasing at a fixed rate, it implicates the

greatest gain of the reservoir s water. Ans. 5
f-f galls.

(c.) Of what influence is the 45 in problem (a.) in the

matter of influencing the above results ? Ans. None.

13. (a.) A farmer has a triangular plain situated be

tween three crossing public highways, so barren and pointed
at one angle that it is not worth his while to make a fence

enclosing all that point. The sides are 81, 74, and 15 rods.

He concludes to run a straight fence on the side 15 rods

long, and on portions of the other sides nearest this short

one, and then run a fence across the lot parallel to the side

15 rods long. It is required to determine the length of

this cross fence and the area of the fenced lot and of the

unfenced lot, if all the fence, in number of rods long,

bears the least possible ratio to the number of square rods

fenced.

(b.) Releasing now the condition that the straight cross

fence must be parallel to the side 15 rods long ; required
its length when the above ratio may be still smaller, and

the smallest possible ;
then how many rods of the 81 and

of the 74 are respectively fenced.

(c.) Required to determine if some portion of every

possible plane triangle may not be cut off by a straight
line and at each of its angles, and the law of all such

lines, the perimeters being thus reduced to a minimum
ratio in units of any name to the square units of area, for

the six-sided figure thus produced, i. e., preserving some

portions of the original sides in position.

Ans. The lines must all be tangent to the greatest in

scribed circle.
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(d.) Required to determine the nature of an original

triangle when the hexagon thus produced may be the

largest possible part of it. Ans. An equilateral triangle.

14. (a.) A farmer has a lot of land in the shape of a

right angled plane triangle, of which the hypothenuse is a,

the other sides b and c. Required to determine the length
and breadth of the largest rectangular lot which can be

laid out in it.

(b.) The sides of a plane triangle, not necessarily right

angled, are respectively given, it is required to inscribe

three largest parallelograms, the half of each as determined

by a diagonal, being one identical portion of the original

triangle.

(c.) And it is required to find the largest rectangle which

can be inscribed in the above triangle, and having the equiva
lent of its own half in common with the halves of them.

15. Divide a into two such parts that, one part multi

plied by the second power of the other, shall be a minimum.

16. If coin is conditioned to be cylindric in shape, which

it always seems to be, how must it be proportioned that the

greatest bulk may be united with the least surface, and

consequently the liability to wear away by friction the

least for a cylinder.

Ans. Diameter of face and thickness equal.

17. A turner, having the trunk of a locust tree in the

shape of the frustum of a right cone, such that if the por
tion having the apex were restored, it would complete a

cone 28 feet long in the axis and 16 inches in diameter at

the base, is told to turn out the largest cylindric gate-post

possible, whatever the length of the frustum might be.

Required to determine what length of it he would use, and

the diameter of the post required.

18. (a.) A turner is given a lignum-vita? ninepin-alley

spherical ball 4 inches in diameter, and told to turn out the

largest possible right cone. Required its dimensions
;
and
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the weight of the ball being uniform, required to deter

mine the weight of his chips or waste, as compared with

that of the cone. Ans. Height of cone 2f inches.

(b.) It is required to determine whether a section of such

a ball, passing through the axis of such cone, shows a maxi

mum triangle in a circle, a problem which may be deter

mined.

19. (.) A milkman, M, delivered daily in New York
some quarts of milk to each of some customers, on each of

some streets, the quarts, customers, and streets being the

same in number
;
and in addition he delivered 85 quarts in

Brooklyn. Now N, another milkman, hearing of this, said

he believed that himself furnished daily each of his own
customers 8 more quarts than Hfdid his, whichMadmitted

,

that, although they were all on Chatham Street, both agree
that N had 3 times as many customers as M had on any
street; JV was, therefore, ready to wager that his own
deliveries of milk, in the aggregate, were the greatest. The
discussion grew warm, and they put the statements in

writing as above. Admitting the claims of the latter, or

givingN every advantage in the interpretation of numbers,
does he win ? GivingM every advantage, how much may
his daily aggregate exceed JV s ?

(b.) The next day M acknowledged that his delivery in

Brooklyn amounted to only 72 quarts. How does the

original bet stand on this hypothesis ?

(c.) What is the difference of the aggregate deliveries

of the two men (on the hypothesis of the 85 quarts deliv

ered in Brooklyn) when they are the nearest alike ? and

who owns the difference ? And, on this hypothesis, how

many quarts do each deliver in all ? and how many quarts
to a customer ?

20. (a.) A hound starts to catch a hare which is 22,000

feet, in their common line of motion, in advance of him
;

from which point the hare makes off 157 times as many
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leaps as there were feet in each leap ; during the same

time the hound makes after the hare 2714 leaps, each of

the same length as the hare s. Now, such was the length
of the leaps that, when they were completed, the hound

was brought nearer to the hare than had the leap been of

any other length whatever
;
what was its length ?

Ans. 8 iff feet.

(b.) Could the hound have caught the hare by any

length of their common leap? Or could the function of

the leap, which expresses the final distance of the animals,

= 0?

(c.) How far apart were they on completing the leaps

$|o T. fee long ? How far had each run ?

(d.) Had both started when the hare was 2200 feet in

advance, might there have been two distinct lengths of the

leap, adopting either of which the hare would have been

caught, and in what two places ? And what length of leap

would have put the hound most in advance of the hare ?

(e.) A hound starts to catch a hare, which is 22,000 feet

in advance of him, and the hound makes 159 times as

many leaps as there are feet in each
;
while the hare, start

ing at the same instant, makes 2814 leaps, each of the same

length as the hound s. Adjust the leap to the greatest
success or gain of the hare. Distance apart then, and the

travel of each, what ?

(/.) Supposing the animals move uniformly, and during
the same time, according to a rate that is to produce a re

sult of distance specified in problem ;
when the hare has

leaped 100 rods, where is the hound ?

21. (a.) An incendiary, escaping arrest, travelled by rail

road cars 3 f hours at a certain rate, when an accident

happening, tending to delay the cars indefinitely, he resorts

to horses upon a highway by the side of, and continuous

with, the railroad. He thus rides at one third the rate at

which he had gone by cars, and as many hours as leagues
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per hour, and successively on as many horses as hours on

each, when he judges it best to conceal himself. The next

day an officer travels in pursuit from the same point of

starting, and proceeds 6 times as far as any one horse had

carried the fugitive, and 7 leagues more, and the pursuit

ends ; now, whether he arrives at the locality of the fugi

tive or not, may depend upon the rate at which the latter

travelled, say by cars, per hour. Required the rate or rates

when the officer accomplished as much distance as the

fugitive.

(&.) In case that by any rate of travel of the fugitive by
cars, we find the pursuer accomplished as much distance as

the fugitive, it is required to determine which, by any pos

sibility, may have accomplished the more distance, and how
much more.

(c.) Required the limits of rate of travel of the fugitive

by cars, by which he accomplishes the more distance
;
also

the limits by which the pursuer accomplishes the more.
x 3 6x 2

. 35 x
Ans. At three different values of x in - -

27 9 9

7^ = y, is y= ;
at x = 5, y is at a max.

;
at x =

7, y is at a min.

22. The square root of a certain numerical quantity is

taken from 57, and the remainder multiplied by that

square root, and the product is a maximum. Required the

quantity. Ans. 812.
23. A and JB own 1500 square rods of land, and also 5

equal square lots lying together, and they propose to divide

all their land between themselves. In consideration of the

quality of the land, A agrees to accept and J2 to grant a lot,

a side of one of the lots in one dimension and 100 rods in

the other. Whence .7? s share was found to be the smallest

tract he could possibly have, for any size of those lots what
ever. Required the dimensions of _Z? s share, and of one

of the lots. Ans. _Z? s share 1000 square rods.



84 DIFFERENTIAL CALCULUS.

24. There arc two level lanes, which are straightly and

perpendicularly walled at each of their sides
;
their widths

are respectively 13 and 17 feet. They meet at right an

gles. A straight pole, of which the diameter may be called

nothing, is to be carried level past this corner on the

shoulder of a boy. Required the length of it when it is

the longest possible. Ans.

Here the minimum length of pole is the logical maxi

mum, in the economy of the problem.

25. A right cone is one of which the axis is perpendicu
lar to the base. The base of a right cone is 8 inches, its

height is 14 inches. Required the diameter of the largest

sphere which it can enclose.

26. (a.) How far apart must a person, whose feet are b

or 10 inches long, place the foremost end of his feet, while

his heels are together, that the area of the base, on which

he may be said to stand, may be the largest, and, therefore,

the most secure as a general support?

(b.) But since his heels cannot in strictness-be placed on

one point, it is required to determine the above question,

with the allowance that his heels may be a or 15 inches

apart, but we will now condition that the feet be symmet

rically situated, writh reference to the line which joins the

heels.

The solution of this problem will embrace the previous
one if we put a = 0.

Let x the distance required

then, x=-V 2 # 2
H

The ambiguous sign of the above result indicates that the

principle involved does not discriminate that the weight
of the body bears on the heels more than on the toes, and
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so tolerates the condition that the foremost ends of the

feet may be nearest together, as well as the heels, which is

true.

27. A company of 90 men was formed, in 1849, for min

ing in California, on equal shares, but before actually com

mencing labors they are induced to admit more members

into the partnership. After working one day the whole

company take 9 pounds of gold dust, and the second day
take as many pounds as those new members number. On
the third day,

&quot;

prospecting,&quot; the whole party take no gold,

but lose, each man, by thieves T|^ th as many pounds of gold
as those persons numbered who last joined them, when the

company conclude to settle up, to allow the members to

labor individually. It is required to adjust the number of

those latest members to the greatest luck or good fortune

of an individual of the whole for the three days, and to

determine how much gold was a share.

Let 90 =
,
9 = a, and T^ = c,

and x =. the new members ;

then one member s share is

a -{- x
_ _,_. j

st rp -
nj

dy ba= C = in case of a max. or mm.,
d x (b -\- x)

2

.:X = L V = 18 or 198,

which is negative under the values which these constants

are known to have
; indicating a maximum for y while x is

positive at 18, and a minimum for y when x is made 198.

8
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However, x with the value 198, has no application to

the language of the problem as enunciated.

116, This occasion is taken to remark that differential

coefficients are not always to be necessarily regarded as

mere numerical amounts or ratios. They are functions as

well, and it is useful to read them in the language of a

problem s special kinds of quantity. Thus, in regard to the

problem of the 90 California miners as first stated, the first

dif. coef. of such function as always expresses one actual

laborer s share of gold dust, for every possible number of

new members, which coef. is

d y b a

x (b + x)
2

when read as a derived function with the significance of

the quantities preserved, may be as it follows after this

preamble:
One actual laborer s share in pounds will always be found

to vary (as depending on the variation of the number of

new men) just&quot;
as the following supposed share, compared

with 1 pound, will vary, viz. :

From as many pounds of gold dust as the original com

pany numbered men (90), take what the workers obtained

the second day (9), and divide the remainder among the

actual workers as their number would be after each worker

had withdrawn, and put in his own place a company equal
to the whole workers, and then take away from each such

share T| th part of a pound.
28. (a.) A and B set out at the same time, from places

320 miles apart, and travel to meet. Each travels uniformly
at his own rate, and the number of hours at the end of which

they meet, is equal to one half the number of miles which

J? goes per hour. May there be any number of miles

which B may go per hour, according to which any possible
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difference between their rates per hour may be a maximum
or minimum ?

(b.) Less than at what rate per hour can they not, go,

when they both travel alike ? If they travel at the same

rate, what is that ? How much slower may A go than _/??

B than A ? Ans. Infinitely.

(c.) What is the rate of each, if they differ 3 miles per
hour ?

Ans. Ambiguous, because it is not hypothecated which

goes the faster.

(d.) Required the rate of each when A goes 3 miles per
hour faster than 13, and the rate when B goes 3 miles

faster than A.

29. Two straight lines, A B and A C, of indefinite

length, meet at the point A at right angles. It is required
to determine the length of the shortest hypothenuse that

shall pass through a given point situated in the plane of

those two lines, at the perpendicular distance a from A B,
and b from A (7, and complete a right angled triangle.

Let x = that part of A C not equivalent to a
;

then = that part of A B not equivalent to 5, because
* ab

x:b:a:
;

X

let y = the hypothenuse,

then y = V ( + ^)
2 * +

dy 2a6 2 2a 2 i 2

d~x
a

x 2 x 3

is a minimum when y
1

is.
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This problem is more general in case the angle at A is

any, and the hypothenuse is called the unspecified side,

but requires trigonometry.

30. Required the area of the greatest right-angled

triangle which has 11 inches for its hypothenuse ; also,

which has a for its hypothenuse.
31. There is a cylindric tin pail without a cover, of which

the bottom is 9 inches in diameter, and height 8 inches.

Required to know if another pail can be made that may
hold as much water with less sheet tin, and how much loss

;

and required the rule of proportion between these dimen

sions, both when having a flat cover and when without one.

32. What decimal fraction exceeds its cube more than

any other numerical quantity whatever exceeds its cube ?

Ans. .577 +.
33. Divide 25 into two such parts, that the product of

the second power of one part by the third power of the

other, may be larger than any other product of its parts at

those powers.
Ans. 15 and 10, the larger to be of the third power.

34. (#.) Two farmers, A and J?, laid out for themselves

each a farm of equal territory and rectangular shape ;
a

straight line drawn from a corner of As farm across it, and

meeting a side 68 rods from that corner which is diagonally

opposite the corner of starting, is 152 rods long. The re

mainder of the side, a part of which is the 68 rods, is of

the same length as one side of ^Z? s farm. Required the

length and breadth of each farm when they are the largest

they can be upon these conditions.

(b.) If j5 s farm, by any dimensions we may adopt for

it, is square, required the length of one side
;
and the two

sides of ^4 s.

35. A farmer, having at first 80 dollars, sold 3 times as

many bushels of potatoes, as he sold them at in cents per
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bushel, and then purchased 246 bushels ot corn, each

bushel at the price of a bushel of potatoes just sold, and

has left a least possible or a greatest possible amount of

money. Required whether greatest or least, and the prices

of the potatoes and corn per bushel.

36. From the equator a ship sailed north 50 times as

many hours as she sailed miles per hour
;
thence she sailed

south 1000 hours at the same rate, and the result was the

least possible gain to the north. Required how many
miles per hour she sailed, and how far she is from the

equator.

37. (a.) Supposing the Boston and Worcester Railroad

and the Old Colony Railroad to run from Boston at right

angles to each other, and the roads straight, and that a

train of cars on the Worcester road, 19 miles from Boston,

is ready to start, headed for Boston, at 32 miles an hour,

and a train on the Old Colony is ready to leave Boston at

the same instant, at 20 miles an hour, how far from Boston

will each train be when they are nearest together by a

straight line across the country, and how long after starting,

and how far apart then ?

Ans. In part, the train on the Worcester road 5f
miles from Boston.

(&.) Repeat the problem, with the conditions all the same,

except that the Old Colony train is to have 25 miles the

start of the former condition, and see if any indication is

offered that the occurrence we are watching for must have

already happened, or would occur in the future, on each

train reversing its direction, and where will the condition

exist, and how long after starting from this position.

38. It is required to find a numerical quantity such that

if from 9 times itself its second power be subtracted, the

remainder will be equal to 3 times the quantity plus another

sum
;
what is the quantity when this other sum is the

greatest or least possible, and which of the two ?

8*



90 DIFFERENTIAL CALCULUS.

39. The sum of two quantities is 22
;
the second power

of one added to twice the second power of the other, is a

maximum or minimum
;
which ? Required the numbers.

40. The difference between two quantities is 10, and the

difference of their third powers is a maximum or minimum.
What are they ?

41. A wholesale druggist bought 542 (a) pounds of a

drug at $3.57 (b) per pound, and sold from it, a part at the

same number of cents per pound as equals the number
of pounds not sold, and the whole amount of the profit or

loss on this sale was the greatest for any quantity sold
;

at what price was that portion sold per pound, and what

the amount of the profit or loss on that portion as a whole ?

Let x = cents per pound of that sold
;

.-. x = the number of pounds not sold
;

..a x = the pounds sold
;

.*. x ^f b =. profit or loss per pound on that sold.

Let y = (a x) ( x ^p b) = all the profit or loss
;

. y, i. e., (a + b) x + # 2
=f a b = max. or min.,

.-. y is a maximum for profit, and minimum for loss, at the

same value of x.

Since x
^&amp;gt; 5, the sale is known to be at a profit, /. y =

max., because the negative sign of second dif. coef. be

comes adopted.

NOTE. In the URC of the doubtful sign , care should be taken to preserve

throughout the above work their proper correlation ;
the upper all belonging

together in the logical relation, or the under.



PROBLEMS IN MAXIMA AND MINIMA. 91

42. In a certain country may be found a factory which

turns out toys. Factory No. 1 makes a toy, which it packs
in a paper; and with regard to this factory, one such pack

age may be indifferently called a paper, package, case, or

box. Factory No. 2 puts 2 of its toys in a paper, 2 papers
in a package, 2 packages in a case, 2 cases in a box. Fac

tory No. 3 does the same, except it puts 3 toys in a paper,

3 papers in a package, 3 packages in a case, 3 cases in a

box. Factories No. 4, 5, 6, etc., put 4, 5, 6, etc., respec

tively, toys up by the same rule of packing; each factory

commencing with one more toy, paper, package, and case

than its predecessor, and so on with factories indefinitely,

Now, in one of the two packing rooms in each factory, the

last stage is the packed case, in the other, the last stage is

the packed box. Suppose that in the case room of each

factory, there are 144 packed cases
; enough of these are

carried into the box room to make 3 boxes, if possible.
These boxes are then collected and shipped. Remaining
in the case room of which f-ictory, is there the greatest
number of individual toys ? In which remain none ? and
between what factories is the difference the greatest, in the

number of toys left in the case rooms ?

Ans. In the 36th is the greatest number
;
in the 48th

none
;
the difference the greatest between the 23d

and 24th
;

in the 23d, toys 912,525 ;
in the 24th,

995,328 ;
in the 25th, 1,077,375 ;

difference between
23d and 24th, 82,803 ;

24th and 25th, 82,047.

It is obvious that the problem cannot have practicability
under such generalizations of the constants, as would ren

der the above results fractional. Thus, if 144 were to be

replaced with 141, the 36th in the above answer becomes
35 f

43. The sides for constructing a quadrilateral plane fig

ure, are consecutively 27, 19, 42, and 31 units of length,
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any three of which are greater than the fourth
;

it is

required to determine the diagonal meeting the sides 19 and

42, and that meeting the sides 42 and 31, when the area of

the quadrilateral is the greatest possible. Required that

area in square units of the same name.

44. A man having a sum of money, gave 90 dollars of

it to a charity fund, and distributed the remainder of it to

the same number of deserving orphans, as dollars to each,

one of whom was T. Now, there were some schools close

by, as many in number as T received dollars, each school

having as many boys, and each boy owning as many dol

lars as T received, or owing as many, for we did not hear

distinctly, but consider that it might have been either way.

Required to determine the relation between the sum of

dollars originally possessed by the man, and the possessions

in dollars, or debts of these boys, and their relative rates

of variation for all possible sums.

Let x = the man s sum ;

and y =. all the boys sum
;

.:y = (x 90)
1

;

Here may = 0, but y has no maximum or mini-
d x

mum, because dF (a; h) is imaginary when x =. 90.

45. A man having a number of dollars in a purse, put
10 dollars of it into a Savings Bank, and having divided

the remainder into as many parts as he put dollars in a

part, proceeded, having other money in a pocket book, to

purchase some articles, which were just 22 in number less

than the original number of dollars in the purse, paying for

each article a sum equal to one of those parts. Required
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to trace all the relations between the number of dollars in

that purse, and the value of all those articles purchased.

The function (x 22) *J x 10 = y, has the value

zero when x = 22, and when x = 10, and an algebraic
maximum and minimum when x = 16, which value is in

compatible with the conditions. After x exceeds 22, y is

practicable to infinity in its positive values.

DEFINITIONS.

117. A. pyramid is a solid figure contained by planes,
that are constituted between one plane called the base, and

a point above it called the apex, in which they meet.

A prism is a solid figure contained by plane figures, of

which two that are opposite are equal, similar, and parallel

to one another
;
and the others are parallelograms.

A parallelepiped is a solid figure contained by six quadri
lateral figures, whereof every opposite two are parallel.

A rightpyramid has its apex perpendicularly over the

centre of its base, when that base has such regularity as to

have a centre, equally distant from the termination of each

side of that base.

A right prism has rectangles for such of its sides as must

be parallelograms.

A right parallelepiped is contained by no other plane

figures but rectangles.

46. (a.) The base of a right pyramid is triangular, of

which the sides are
, 5, and c, and height is II\ it is

required to find the contents of the largest right prism
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which can be contained in it, and each linear outline dimen

sion of the same.

Ans. Contents, II X - X area of base.
3 9

2a 2b 2c 1 .

Linear outline, , , ,
and - H.333 3

(b.) The base of a pyramid is triangular, of which the

sides are a, ,
and c, and the perpendicular height is H\ it

is required to find the sides of the triangles that are par

allel, containing the largest prism that can be contained in

the pyramid.

(c.) The base of a right pyramid is rectangular a by #,

and perpendicular height is II\ required each linear out

line dimension of the largest parallelepiped that can be

contained in it.

(d.) The base of a pyramid is quadrilateral, the sides

being a, #, c, and /; the area of the base A, and perpen
dicular height is H. Of such two like plane figures as are

parallel to each other, and are determinate, and bound the

largest prism that can be contained in the pyramid, required
the sides. Required also the ratio of the contents of the

prism to those of the pyramid. Ans. Ratio $-ths.

47. A hound discovers a deer 1800 (a) feet ahead of

him : they both start the same instant, the deer in a direct

line, pursued by the hound
;
the hound makes a leap each

second, and 1 foot longer than the deer s, and makes 3 more

leaps than the deer does in the time that the deer makes

one less leaps than the number of feet in its length.
After taking 120 (b) leaps, the deer becomes arrested by

the breaking of the crust of snow
;

at this instant the

hound seeing the deer arrested, adds 2 feet to the length
of his previous leap, and makes 7 in the time that he made
6 before, which he continues till he comes up with the deer.

Now, if the deer was occupied in extricating himself, or in

resting during the greatest or least time possible, how
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long had been the deer s leap, to accommodate this con

dition ?

Let x = feet leaped by the deer at a leap,

and y = number of leaps of hound after deer stops ;

/. b x = all the feet leaped by the deer
;

/. x -\- 1 = feet of hound s leap at first ;

x+ 2
/. -- X ft (a + 1) = h. s dis. attained when d. stops ;

/. a -|- b x = whole distance for hound to go ;

a-\-bx--- (b x -\- b)= to be leaped by h. after d. stops ;

let

let e = a 4 b ;

and g -f- a -f 2 b
;

c (x + 3)

let y =
ex g

-*- ex 2 3e + 2ff At,= = 0, when y= max. or mm. ;
(L y ( r% i-u 9 T r\\% **

/. the numerator =
;

2^~ 3 e + = 12.66, or 9.46;
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d*y&amp;gt; QE
2
4-2a; 3)(2g 2 ear) (2x + 2)(2gx ex*

dx* (a;
2 + 2 a; 3)

4

6
now y = y X -

d 2 y
Now, y is a max. when y is, as is evident, and - - is

negative when x = 12.66
; hence a maximum which is an

answer, and the negative value of x, is not within the

significance of the language of the problem.

SECTION XIII.

COMPLETE HISTORY OF FUNCTIONS.

118. It is useful to become acquainted with the methods

of fully examining the entire history of a function of one

or more variables, in respect to the range of values which

the function and its variable may sustain, and to their

mutual dependence. Attention should also be paid to every
constant in its influence on the function. All the promi
nent characteristics of value, and the rates of change of

value, should be noted, by special regard to the value of

dif. coefs.

A function should be tested for the values -|- o&amp;gt; and

co, and for how many times or successions it has either,

and at what values of the variable respectively ;
whether

it passes from -)- co to co, or from co to -\- co with

instanitaneity, so to speak, as when we should examine

y = x~ l and
2/
= ie~ 2

,
and observe the marked differ

ence in respect to x
^&amp;gt;

or x
&amp;lt;^ 0, i. e., while x passes the

value 0.

A function should be tested for what it becomes when
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the variable = 0, and for whether it has more than one

value for the variable =
;

it should be tested for the

variable -f- co and = c/&amp;gt;.

A function should be tested for its value, zero, for how

many times it has such, if at all
;
for at what value or

values of the variable it has such, whether it passes through
such value or not, and if through, at what rate of change.

A function should be tested for maxima and minima,
for how many times it has either, and at what values of the

variable
;
the same dif. coefs. may be employed to deter

mine with facility, whether the variable of itself has maxima

or minima
;
and if so, at what values of the function.

Since the constants that occur in a function are quan

tities, with which both the variable and the function are

most concerned, or with which they are most compared,
and in consequence are liable to exhibit marked character

istics when they become equal to or pass the value of such

constants, tests should be applied for the values of both

the variable and the function, when either is equal to such

constants, but sometimes to a combination of such con

stants, as a product, sum, or quotient.

Functions of a single variable should be studied with

reference to interrupted values, i. e., to losses of con

tinuity.

A function should be tested for the maximum or minimum
of its rates of change of value.

A function should be tested for proof of symmetrical-

ness, or having the same value when its variable is a given
amount less and more than some specific quantity or

;

and the variable be tested for having the same value when
the function is a certain amount less and more than a

specific quantity or 0.

It will be necessary to be prepared for cases in which

neither the function nor variable can have any real values

whatsoever.

9
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The nature of these inquiries may be shown by an

instance :

1. Let it be required to determine the range of all pos
sible parts into which the number 50 might be divided,

both when one of the parts is not greater than 50, and

when it is any number whatsoever, estimated by algebraical

equivalents ; or,

Required the chief points in the history of the function,

y or F x = 50 x # 2 = (50 x) x.

F x will be found to have a maximum when, and only

when, x = 25, F x being 625, for there is but one value of

x at which there is any maximum. It can have no mini-

d 2
y

mum, because
g
is always 2, and of course such when

a = 25.

F x cannot be so great as 625 at any other value of x

than 25, because in the equation,

50 x x* = 625,

x will be found to have but one value, viz., x = 25
;
F x,

therefore, cannot = -f- co in value.

F x may = c/&amp;gt; both when x = co, and when x

-f- co, for, solve the equation,

50 x x* = co,

.-. x = 25 V *&amp;gt; + 625 = co.

F x has the value 0, both when x = and when x =
50, for, solve the equation,

50 x x* = 0,

.-. x = or 50.

Such are the general outlines of the history of possible
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values of F x and of x. Commencing now, with x alge

braically the smallest conceivable, or = eo, F x being
also eo, we have,

y ==. 50 x x^ = eo,

and x = eo

=+;
because 50 2^= 50 (2 X co)=50+co=eo.d x

Since the first dif. coef. = eo when x = eo, F x is

indicated about to increase or become a smaller negative,
d 2

y
at an infinite positive rate. And since is always 2,

such rate of increase is ever to diminish, and we know that

50 2 x grows less as x increases. These conditions con

tinue till F x = and x = 0, when = 50
;
hence F x

d x

passes through zero, increasing 50 times as fast as #, and

beginning now to have positive values, goes on till F x =
625, and x = 25, when = 0. F x now returns to have

d x

a less value, till it = 0, x then being 50
;
in diminishing,

F x passes through the value 0, while

= 50 2x = 50 2X50:=: 50;
d x

which indicates that F x passes again through zero, dimin

ishing 50 times as fast as x : so F x goes on to = eo,

already shown, when x = 4- eo and = eo, as shown.
d x

Again, F x is symmetrical in its history before and after

its maximum
;

i. e., while x is any amount greater or less
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than 25, F x has the same value. This may be verified

thus :

Let x = v -\- 25,

and x = 25 w
;

= 50(25 w) (25 w)
2

,

whenever w = v, because, on such condition, the members
of the equation reduce to identity.

If the given function should be as general as

a x n b x* n
,

this characteristic of symmetricalness could be shown.

2. Let it be required to determine whether the equation
of the Second Degree between two variables, x and y, viz. :

50 x x* y = 0,
t

involves the elliptic, hyperbolic, or parabolic condition.

(Arts. 50, 51, 52,) An s. The parabolic.

3. It is required to determine whether F x x 3
-\-

3 a;
2

-f- 24 x 85, has a maximum and a minimum at any
values of a?, and to explain how it can be -|- co and c/&amp;gt;

also.

4. It is required from F y = x, viz., 50 y y
2 = x, to

obtain some function of x equal to y, and recount its

history.

5. Required the complete history of y = .

6. Required the complete history of y =- .

7. Required the complete history of y =- .

b # 8
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SECTION XIV.

PRINCIPLES AND PROBLEMS RELATING TO PROJECTED
BODIES.

119. The height of any point in the course which a

dense body like a stone or a mass of water takes, when
thrown in any direction whatever, near the earth and

through a medium no denser than the air, and at velocities

not exceeding 300 or 400 feet per second, may be almost

exactly expressed by this function of its attained horizontal

distance at any the same point, x being that distance, viz.:

=
( 7&amp;gt;

in which a represents the whole horizontal distance attained,

with reference to the level of the point of commencing to

.move, or rather of the commencing calculation, and in

which b represents such a number of times, or is such a

factor to one fourth of
,
as equals or expresses the greatest

height attained by the body if uninterrupted. But b may
be fractional.

The demonstration of this formula belongs to Mechanics.

130. In the particular case when the body is thrown
most favorably to attain the greatest range or horizontal

distance for the force used, b becomes of the value 1, and

may consequently be erased from the formula. For may

be found to be the maximum value of

and this value accrues to the function y, when x=
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131,* Iri the particular case, when the body is thrown

perpendi-eularly upward, since x = and a = 0, the gen
eral formula,

being restored, it would, at first thought, appear that y, or

the height attained, must be zero, which would be absurd
;

but b being conditioned to be equal to such a number of

times - (= 0) as would make the actual greatest height

attained, must be infinite, so that

co X = y,

where y may still have any finite value.

In the particular case, when the body is thrown

horizontally, and attains no height after starting, each of a

and b are zero, and the one only possible value of x is zero,

with reference to that line of level. But a new line of level

may be any where assumed, or the point where the body
strikes or finds its course interrupted. Indeed, the descent

of a thrown body is in its course, with reference to horizon-

tality, symmetrical with its ascent, and we have shown

elsewhere the symmetricalness of the function

50 x x 2 = y,

V X^
which, if 50 = a and = y ,

becomes x-- = y \
but

it may have any factor or #, and the symmetricalness
shown. Hence, the point of interrupted motion of a thrown

body may be considered, for all the purposes of these cal

culations, as the point of projection.

Hence, a body thrown descendingly, describes the

course of a body thrown upwardly, and having its upward
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motion interrupted before it may be completed ;
this being

so, whether directly downward or laterally be the direction.

124. And hence further, a body allowed to fall directly

down, is thrown by its gravity ;
and its point of setting out

is the same as the point of greatest height that would be

attained in the case of the same body thrown directly up,

with the force such as it would have acquired in a fall

through that same distance.

125, If the function given as expressing the variable

height of the thrown body, be differentiated, we have

dy 2b- =b -- x.
ax a

The value of this differential coefficient expresses the

direction of motion of the body, while at the distance x
on its course, with reference to horizontally and perpen

dicularity ;
it is their ratio, d y being upward, d x lateral.

This coefficient is evidently greatest in practicalness when
x =

;
therefore a body is making upward the most direct

ly at its point of setting out. It is zero when x = a
;
the

body is then for an instant of time moving horizontally ;

maximum height is attained.

In the case when a body is thrown in the most favorable

direction to attain range for the given force, since b = 1,

this coefficient then = 1, consequently the body is thrown
in the direction of the hypothenuse of a right-angled tri

angle, such as has its base and height equal, or at an angle
of 45 degrees.

126, When an elastic thrown body strikes a firm per

pendicular plane, as when a playing ball strikes the side of

a building, the course and distance of the rebound are almost
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the complement of the course and distance as they would

have been had there been no interruption.

127. Since the points of the setting out and of arrest

of a thrown body in practice, are determined by human

economy, or the presence and interruption of the earth,

such points are special, and have no significance in the gen
eral mathematical indications of its course, which are more

completely fulfilled in the case of moving celestial bodies.

The thrown body may be conceived to have come out of

the earth, and to again pass into or through it.

128. If, furthermore, we will discharge the condition

that the successive lines of the measured heights of the

thrown body are to be parallel, and will assume them to be

parts of the radii of the earth, which is the more proper

consideration, then will the thrown body return in its orbit

into and out of the earth, or through it and back, and con

tinue to revolve forever. But the formula would need

some change to be rendered compatible with this course.

Hence, further, a body thrown or dropped towards the

centre of the earth s gravity, must, after going as far

beyond, return in the same line, and oscillate forever, if

uninterrupted.

129. If a body could be conceived as thrown with an

infinite force, so that its range, a, may be also infinite, the

formula

(x*\x--
)
= y, becomes b x =

a
y,

because the fraction of which a is the denominator, be

comes zero (unless x is also infinite, when which is the

case, the fraction has an indeterminate value). The equa
tion reduces to one of the first degree ;

its first differential

coefficient is always b or constant
;
hence the body moves

in a straight line forever.
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A projected body always moves in a plane that is per

pendicular to the horizon, or very nearly so.

1. (a.) A stone is so thrown as to reach the greatest

distance, and its greatest height attained is 40 feet. Re

quired the distance of its arrest or its range.

Ans. 160 feet.

(b.) Required the value of ratio of its upward and for

ward directions at its start. , Ans. 1.

(c.) Required the same after it had attained the eleva

tion of 16 feet, or while possessing that elevation.

In this case,

x - ~
Q
= 16 .-. x = 18 or 142 ;

d&amp;gt;y __ 2 X 18 31
&quot;

dx~
~

160
~

S)

^ __ 2 X 142 _ 31

dx~ 160 40
&quot;

The former of these results is adapted to the ascension,

the latter to the descension.

2. A stone is so thrown as to attain for its greatest

height 62 feet, and distance 142 feet; it is required to de

termine how far it was from, when directly over or under,
as it may be, the telegraph wire, which crosses the plane
of the stone s motion, at 40 feet distance, horizontal, and

height 50 feet.

8. A steam fire-engine threw water, the pipe being
directed to a point 30 feet high at 70 feet distance

;
the

force used carried the water a distance of 274 feet, meas

ured on the level of the mouth of the pipe. Required the

greatest height attained by the water above that level.

Ans. 29.35 feet.
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4. From an elevation of 44 feet a body is thrown in its

first outset downwardly 8 and laterally 5, in direction of
aim ; the force used was such that had it been exerted in

precisely the opposite direction, the body would have risen

to 17 feet greater height than that elevation. Required to

determine how far from the foot of that elevation the body
struck the ground. The direction of aim is supposed to be

tangent to the course adopted by the body.

In this case we readily find the range the body would

have made on the level of its setting out, had it been

thrown in precisely the opposite direction, to be 108 feet=
a

;
then with the variables x and y adapted to this level,

we find for the value of y = 44, which value we will

denote as, dy , ^ ^

M2

d~x&amp;lt;

~ &quot;

135

o

to obtain which, b = -, was called negative. Adopting
5

now the lower level as the basis of calculation, x and y
as the variables, we have 17 -\- 44, to find a

,
the lower

range, from one half of which we subtract one half of a
cl *u

for the answer
;
the negative sign of is adapted to de-

d x

scent, and may be called positive with reference to the

result desired, if the motion of the thrown body be con

strued as upward.

5. A person undertaking to draw a liquid from a small

hole bored horizontally into the head of a barrel, observed

that when the stream had obtained the downward descent

of 7 inches, its lateral reach was 9 inches from the barrel s

head, the same being supposed perpendicular. The hole

was 27 inches above the floor, upon which stood a cylindric

tin vessel of 4 inches diameter at the top and of 6 inches

depth ; the central axis of the vessel in the plane of the
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stream was 18 inches laterally away from the perpendicular

plane of the barrel s head. Required to determine whether

the liquid was caught ;
the diameter of the stream being

considered zero.

130. It is an important general principle to state, that

the direction of the aim of an upwardly thrown body is

always towards a point just twice as high as the body ever

reaches at its greatest height, when such point is taken

perpendicularly above the point of the greatest elevation

that is to be actually attained without interruption. Hence,
in the problem of the drawn liquid, the differential coeffi

cient of the function descriptive of the course of the stream

at the point 7 inches down, 9 inches lateral change, is -
,

9

if the direction of motion be considered reversed. But
the most direct way of solving this problem is on the

principle, true with reference to all falling bodies, when
the point of commencing descent is given, that distances

attained downward from this point are direct to each other

as the squares of the laterally attained distance
; hence,

Z being the lateral distance of stream when it is down 21

inches.

131. If the formula (Art. 119), be considered with refer

ence to the Degree of its Equation, it will be found to be

of the Second, and to involve the Parabolic condition (48),

because in

i. e., a y -f- a b x b x* = 0,

we have a = D, ab = E, b =
&amp;lt;7,

= B, and = A
;

... j?2 _ 4 A c= 0.
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The change of the formula suggested in Art. 138, but

omitted, would give us an equation involving the Elliptical

condition.

Gunshot projectiles being thrown at velocities varying
from 900 to 2000 feet per second, the resistance of the air

condensed before the moving body becomes so great that

the formula given at (119) is unavailable
;
the body falls

short of the distance indicated by the law of that formula.

SECTION XV.

THE SYSTEM OF SYMBOLS FOR FUNCTIONS. AN IM
PLICIT FUNCTION OF A SINGLE INDEPENDENT VARI
ABLE AND ITS DIFFERENTIATION.

We have shown the nature and purpose of a func

tion of a single independent variable when it is explicit,

and have exhibited the method of notation of it as (a func

tion of x) = y. When more than (one function of x) = y
are employed in one investigation, it will be necessary to

discriminate them
; they are accordingly discriminated, as

F x, f x, f x, f&quot; x, etc. Whenever we are concerned

with two functions of #, which need not be alike, we should

not use F x as a notation for each of them.

133. We have also given in the first Section (Art. 11)

several equations which are generated from supposed con

ditions in a problem, in such a way that no function of x

stands equated with a single equivalent in y. Such are

implicit or implied (functions of x) = y. We are able,

however, in simple cases of this kind to elaborate from the

equation the explicit (function of x) = y. When we may
not readily do this or cannot, we allude to the condition
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after transferring both members to one side of the equation

(leaving, of course, in the other) as a (function of x and

y) = 0, or as F (x, y) 0, and here it is understood that

any and all terms consisting of isolated constants, are

included in the designation ;
it is enough that x and y are

somehow present. Of course in just this notation, viz.,

F (x, y), we find no algebraic association of quantities ;
the

whole expression is the equivalent of a sentence in lan

guage ;
the comma between x and y is intended to assist in

dispelling any notion of a product of x by y, or of any

specific algebraic association.

134. The general equation of the Second Degree (Art.

43) shows the most involved relation possible for this De

gree between x and y ; A, B, (7, etc., being supposed to

be constants, this equation may be cited as F (x, y) = 0.

135. There is a peculiar significance in F (x, y) being

equated with
;

it could not be equated in general nota

tion with any thing else, for every case of such use. Now
in F (x, y) =. there is still the independent variable

,

and the dependent variable y, as ever
; they are mutual

dependents, intended as ever preserving that combination

of themselves with each other, and perluips with constants

equal to zero.

136. But if x and y each stand for quantities which are

lo vary independently, the value 0, which in any such par
ticular case cannot vary, should be replaced, say with 2, to

denote the corresponding values, so that we shall have

F (x, y) = z.

137. An extension of this notation to an implicit function

of two independent variables, gives us

F (x, y, z)
= 0.

10
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138. If there be three independent variables, the nota

tion would be
F (x, y, z) = 10,

and so on. This is the system of symbols for the general

designation of implicit functions of variables.

139. In algebraic equations with two or more unknown

quantities, in which conditions are furnished for the nota

tion of the calculus, viz. :

Fx+fy+f z = a,

etc., etc., = c,

means are supposed to be furnished by the independence
of these equations, for the elimination successively, say of

all functions of z, then of y, till we derive some (function
of x) = some combination of a, 5, c, etc., thence to find

x, thence y, thence z. But such functions must be of the

simplest form to render this possible.

140. We proceed to how that it is not necessary to de

duce in form an explicit function of an independent varia

ble from the implicit state, that we should be able to

differentiate such explicit function as to its dependent

variable
;
that is, we may find from F

(a?, y) = with-
d x

out finding /&quot;a;
= y.

141. It will have been understood in differentiating

a case of F x = y, and making the notation dF x = d y,

the terms of an actual particular function taking the place
of F x, that we have given two names for the same

amount. The function is one. We pass the sign of

equality, and express by d y what is also expressed in the

other member of the equation. This consideration would
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at once authorize us to transpose y previously, so that

from
Fx y = 0,

we should have d F x d y = 0.

Again, there is obviously no reason but that of simplicity

why we equate F x with y rather than with a y or y
2

,
i. e.,

with some function of y. If u be such a function of y in

amount, we might have for differentiation of x with respect
to y as a dependent variable, such a case as

b ic
3
-f- a; = y

2 a y =.u\

differentiatingfy = u, we have

^y dy a dy = d u,

where y may be independent with respect to w, but by

hypothesis y may be still also dependent with respect to x.

Since F x is equated with w, we are entitled in differen

tiating it with respect to w, to the following equation, and

in doing this we do not recognize y as other than a con

stant :

d Fx = 3 b x* dx-\- dx = du,

so that we may infer that we are entitled to the following

equation (remembering that the differential offy depends

ony):

3bx*dx-\-dx = Zydy a dy= du:

from which we are able to deduce an expression for ,

as follows :

y dx dx dx

dy du du
.
du



112 DIFFERENTIAL CALCULUS.

Now, if instead of the above case of F x /?/,

we had had the same in the form off (x, y) = = u
,

that is,

& a?3 ys+ a?+ a y= =V,

there occurs nothing that would alter the result for

. Here we have given an accent to u for denoting that
d x

u is used for f (aj, y) instead of for/y, as before. But

why do we use u at all since we have zero also, and since

d u is manifestly ? The answer is, u = and d u =.

always; but we are proceeding to make the fraction,

and instead of or we find it more useful to use some-
dx dy

thing that will preserve a special relation to/ (x, ?/), and

be a means of discrimination whenever we should have

associated in an investigation implicit functions which we

might be obliged to discriminate as/
1

(#, y) =. = u, and

f(z,w)=Q = v, etc.

Zero does not, in the ordinary use as 0, preserve its

record and identity ;
does not take account of its factors

;

if/ (x, y} = 0, then 10 X / (#, y) = 0, but in the use of

u we should have 10 u.

It is an important principle in differentiation to observe,

that we allow no loss of quantities, such as the factors of

zero, and receive none such of which we do not make a

record.

We may generally place (/ (#, y) = 0) = w, for the pur

pose of differentiation, without the accent.

Let the next be a more intimately connected case of

/ (* y) = 0, viz. :

a x y* -\- b x* y -f a 2 + y
2
-\- c = = u,

.: 2 a x y dy -\- ay* dx -\- b x* d y -f- 2 b y x dx +
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d u
now, Zaxy-\-bx2-\-2y = ;

dy

dy du
^
du

d x
~

dx d y

In finding we differentiate u with respect to just the

variable y.

If the above particular demonstration would authorize a

general rule, such rule would be as follows : but a general
demonstration would be quite abstruse. While, then, the

rule is merely stated, it is recommended, for the purposes
d u

of the following Section, to work out the results for

in a manner similar to the above, by differentiating terms

in F (x, y) = 0, when the following rule will be found to

be a declaration of each result :

143. Whenever we have a case that can be cited as

f (x, y) = 0, and we wish to derive
,
we differentiate

d x

the expression as if y were a constant, and divide the

coefficient so obtained by the coefficient obtained from dif

ferentiating the same expression on the supposition that x

is constant, and then change the sign of the fraction so

obtained ; this fraction is .

d x

PROBLEMS.

1. In the implicit function of the variable x in & 2 +
10 y -)- 5 x = 0, required . Ans. =-- .

10*
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2. Required -- in x* + y* 50 = 0.

dy X
Ans. ~ = - =

dx y V50

This case shows an obvious reduction of an implicit dif.

coef. reduced to an explicit one
;
the previous case did not

require such reduction. In general, the explicit dif. coef.

may not be easily found, or may not be needed
;

all the

purposes of a dif. coef. being subserved by the implicit

dif. coef.

3. Required in a 2 + y
2 m x y 81 = 0.

dy my Zx
Ans. = .

d x 1y m x

4. Required inse 3 3 c # y -|- y
3 = 0.

dy cy
Ans. =

dx y*cx

5. Required in (x a)
2 + (y b)

2= 0.
(I X

dy xa
Ans. -- =--

dx y b

6. Required
d- in 24 a 2

y y* + 10 x = 0.

d y 48 x y + 10

144. It is scarcely necessary to say the successive differen

tiation of/ (a?, y) = 0, relatively to y as dependent and x

as independent variable, may be performed ;
and that Tay

lor s Theorem and the theory of maxima and minima are

available for F x = y in the cases given as/ (a;, y) = 0.

145. But f (x, y) = is constant, and can have no
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maximum or minimum, as is very obvious, and in mak

ing this remark we are not alluding to f x involved in

/(oj,y)=0.

140. In a treatise of algebra the following are given as

illustrations of two equations that are contradictory, be

cause the same value for x is not deducible from each :

1. 3 x = 60
;

2. x = 20.

But suppose we proceed to consider them in this way :

3. Zx 60 =
;

4. ce 20 = 0&quot;;

5. .-. 3 x 60 = % x 20 a = 16
;

whence the question arises, what is there illogical about

such a course of proceeding? although the result is not

compatible with x = 20 or x = 40, as would be severally

deduced from (1.) arid (2.). The answer is, that x in (3.) is

an alien from x in (4.), and by independence it renders

F x = in (3.), and /&quot;#
= ()&quot; in (4.) ;

or 35, for the instant

considered a variable, produces the value in (3.), and 0&quot;

in (4.), by an independent law of change. In regard to

equation (5.), we can say that the value x =. 16, is such as

will truly render Fx=fx. Now, =
, the

d x d x

functions do not change at like rates. Indeed, the zero

in (3.) and 0&quot; in (4.) are not produced from like elements,

and are not compatible with each other, and not equal.

No better proof could be desired of the statements made
in previous Sections in regard to the diverse values of

zero, as dependent on distinct origins.
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Suppose we have the two algebraic equations,

1. 3as = , .-. a: =
&quot;;

2. a; = 0&quot;,/.a; = &quot;;

whence if =
0&quot;,

we have

3. 3x = x;

dividing by cc, 3 = ^ ;

or, 3 ;
_ ice

0&quot;;

/. x =
3 -a

These results are only to be reconciled by the diverse

values of zero, as well as of x when at zero.

Suppose next we have the two equations,

1. 3 x 60 = /.a = 20;

2.
(

3 aj = . . =
&amp;lt;)&quot;;

whence if =
,
we have

3. 3 x 60 = 3 x
;

60
,.*= - =

&amp;lt;*.

Now, in no case are the equations (3.) absurd in nature,

but the mode ofmaking them is not consistent with (1.) and

(2.) in the three supposed cases.

147. In a former part of this section, the nature and the

differentiation of a (function of x and y) = were dis

cussed : there might have been suggested, in that connec

tion, the question, if we have two functions of #, F x and

which might be equal, whether, when they are, their
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differentials are also necessarily equal? But they are not.

This being contrary to what a superficial view would lead

us to adopt, is worthy of a statement of the reasons.

In the simple condition given of F x = f a-, in the

maintenance of which x in F x has a particular value, it is

pure presumption to suppose that this is the same as that

of x in/a-, at which x in fx givesfx the same value.

In the case of F x = y, we call x an independent varia

ble
;
also in the case off x y ,

we call this x an inde

pendent variable. Now in the accommodation of the

particular condition of y = y , x in Fx and x iufx must
retain their independence as ever, as more likely to accom
modate the condition, which a simple example should show.

Let F x be x 2 40 x + 1802, and/a be 80 x x*, then

if F x =fx, we have

a 2 _ 40 x _|_ 1802 = 80 x x*
;

but we cannot deduce any common value of x in F x and

f x, by which this possible equation is sustained.

When we come to the dif. coefs. ofFx and fx, they
cannot be inferred to be necessarily equal for the mere

reason that the functions from which they have been de

rived happened to be such that they might have a com
mon value, but nothing else of nature in common. Dif

ferential coefficients show the nature of functions through
all values. *

The exhibition of many cases of functions of x and their

being equated with y, tends to create an illusion as to their

entire incompatibility when they enter into random asso

ciation as above. They should at once be expressed in

proper language for such association, as F x = y,f z= v,

w = u, etc.
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SECTION XVI.

PROBLEMS WHICH MAY FURNISH IMPLICIT FUNCTIONS
OF ONE VARIABLE, AND CASES OF THEIR MAXIMA
AND MINIMA.

1. A drover bartered 160 head of cattle for sheep : the

number of sheep obtained in the exchange was found to

be 40 times the dollars allowed for the value of a sheep.

It is required to determine the law or rule by which the

value of one of the cattle, in number of dollars, will vary
in the fulfilment of these conditions, compared with the

varying value of a sheep.

Let y number dollars for 1 of the cattle,

and x =. number dollars for 1 of the sheep ;

then 40 x* = 160 y, or 40 a 2 160 y = ;

mxdx 160 dy\

,.

d-y = j *dx &amp;lt;*

Ans. The number of dollars value of one of the cattle,

tends to increase as many times, or as much of a

time, the number of dollars value of a sheep, at

any supposition for either, as of what the number
of dollars value of a sheep, at any such supposition,

may be.

2. A fruit-seller carried a certain number of bushels of

fruit to market, which he sold, and expended $8.50 of the

proceeds for grain, when he found that he had in money,

unspent, the value of 5 bushels of the fruit. If there had

been 22 bushels of the fruit, by supposition, and then just
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an increase in that number be suggested, what effect will

this suggestion have on their change in value per bushel,

in still fulfilling the conditions of the problem ?

Let x = the number of bushels of fruit,

and y = the number of cents per bushel
;

/. x y 850 = 5 y ;

:. ydx-\-xdy = 5dy,

dy _ 850 850

&quot;Tx~

~
(* 5)

2
~ ~

289

Hence the price in cents must commence to diminish at

the rate of 2f ff times the number of bushels should be

supposed to increase. This incipient ratio is expressed in

these units, but would itself vary during the change of as

much as the whole unit, one bushel.

3. (a.) A courier rode 30 hours in all, but successively
on a gray and a red horse

;
the number of miles on the

gray one was 7 times the miles he went per hour on the

red one
;
the number of miles on the red one was 9 times

the miles he went per hour on the gray one : it is required
to determine how the miles per hour on the gray one must
be inferred to change relatively to the number per hour on

the red one, on any suggestion of change of number of

miles per hour on the red one, when either is at any possi
ble rate allowed by the conditions.

Let x = miles per hour on red horse,

and y= miles per hour on gray horse ;

d x
:. = number hours on red horse ;

9

by
and = number hours on gray horse

;
X
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*- 4.779)= -

Whence it appears that y, at whatever value it may

have, will increase minus th, or minus 3.08 times as

fast as x. Since is constant, and cannot 0, there is

no limit to y. Because is constant, there is no limit
dy

to greatness of x. Since in

7 a;
2 + 9 y

2 30 x y = 0,

if y = 0, x = 0, there is not necessarily any distance

attained by the courier, whether he sits on the horse s back

30 hours, or any other number of hours, and the word ride

seems to fail in practicability in that condition. But his

rate of motion may be indeterminately great.

(b.) A courier rode 30 hours in all, but successively

on a gray and a red horse
;
the number of miles on the

gray one was 7 times the miles he went per hour on the

red one, and 1 mile more ; the number of miles per hour on

the red one was 9 times the miles per hour on the gray one :

it is required to determine how the miles per hour on the

gray one must be inferred to change relatively to the num
ber per hour on the red one, on any suggestion of change
of number of miles per hour on the red one, when either is

at any possible rate allowed by the conditions, and whether

there are maxima of miles per hour on each horse.
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It will be ascertained that the words in this problem,
&quot; and 1 mile more&quot; change, very materially, all the charac

teristics of the results of the solution, in comparison with

problem (a.).

4. (a.) A caterer having 9 dollars in gold and a num
ber of dollars in silver, purchased at a market 90 quails

and as many more quails as he had dollars in silver, of such

value each quail, that his silver alone would have paid for

144, and then invested the balance of his money in as

many pigeons as quails already bought. Required the

number of dollars in silver if his quails cost the greatest

possible sum each
;
and required that sum.

Ans. 18 dollars, and 12 cents each pigeon.

(b.) Required what two several numbers of dollars he

may have had in silver that the quails alone should have

exhausted just all his money.

The conditions of the above problem (a.) may be com

pared with those of Problem 27, in Section XII.

5. A man purchased a commodity known as ^4, for which
he paid as many cents a pound as it weighed pounds, and
the number of pounds of A differed by 10 from the num
ber of pounds of the commodity known as J?, which was
his second purchase. The next day he purchased the

commodity distinguished as C, at the same number of cents

a pound as there were pounds, and its number of pounds
differed by 15 from that of the number of pounds of the

commodity known as
7&amp;gt;,

his fourth and last commodity
purchased. But we know of no guarantee that each of

the commodities A and C had weight, though it may be

inferred that one of them must have had. He paid for A
and C 81 cents. It is required to determine the possi

ble range of relative weights of and
_Z&amp;gt;,

and the

11
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greatest and least weights of each of these two com
modities.

Ans. Limits of .7?, 1 and 19 pounds ;
of J9, 6 and 24

pounds.
6. (a.) A furrier purchased two lots of furs : when

asked what he paid per pound for the kind A, he said, this

purse in my hand contains 99 dollars in coins
;

if I take

out as much value as I paid per pound for the kind J3^ and

repeat this as many times as I take out dollars each time,

and if I then take the money left in the purse and divide

it into as many piles as I put dollars in a pile, one of these

piles is the price I paid. When asked how many pounds
he purchased of A, he said 2$- pounds more than I just
took out dollars out of the purse at once, and the amount

of money I expended for each lot of fur was alike. Re

quired a limit of the price of I&amp;gt;.

(b.) If we adopt the principle of assuming a quantity
for .Z?, with the intention afterwards of exchanging it for a

quantity the least greater, at what amount of B are we

stopping in the consideration, when the suggested increase

involves the most rapid decrease of its price per pound.
7. (a.) A counterfeiter, escaping arrest, rode a black

horse as many hours as miles per hour, when he exchanged
and rode a white horse as many hours as miles per hour.

At the instant he commenced riding the white horse, an

officer commenced a pursuit from the original point, at six

fifths of the speed of the black horse. When the fugitive

is done with the white horse, he is just 81 miles from the

officer, at which point he is arrested through the aid of the

telegraph. The owners of the two horses which had been

pressed into the above service by the fugitive, on recover

ing them, were anxious to know which animal had been

hardest and longest driven. It is required to determine that

particular condition, according to which either horse s ser

vice was the greatest the conditions admit of.
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Let x = black horse s hours and miles per hour,

and y =. white horse s hours and miles per hour,

and c = six tenths ;

then 2 c x y = the officer s travel in miles
;

then x 2 + y
2 Zcxy 81 = 0; (1.).

dy cy x
. . = = when 11 ==. max. ;dx y ex

. . c y x = and y = x
;

3

substituting this value of y, for y in (1.),

x = + 6for-- 6f,

Discarding the negative values of x as impracticable, for

an event cannot take place through negative time, we

wish to know whether the positive value of x gives a

maximum or minimum for y, by examining the -
;

^ 2
V (y c x) (c d y d x) (c y x) (d y c dx)

d x (y c x)
2

. dy
since =

;dx

d 2
y

:. --
&amp;lt;^

/. y when ll maximum.

It is to be remembered that
^
in the general state is
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the full one foregoing ;
for has been made special when

d x

made = 0.

(b.) How many miles per hour do the conditions require

the white horse to travel when the black one travels 9 ?

Ans. lOf or none.

(c.) How many miles per hour do the conditions require

the white horse to travel when the black one travels 12 ?

Ans. The supposition is forbidden
;
so great a value for

a; as 12 is imaginary.

(d.) What two values satisfy the conditions for the

white horse s speed if the black one s is made 10 miles an

hour. Ans. 10?\ and l^J very nearly.

It may be interesting to notice that the maximum speed
and duration of service of either horse is not that which

most favored the other, because the distance executed by
the fugitive is not an absolutely determinate amount. The

greatest distance attained by the officer is evidently when
x =. y in 2 c x y, which occurs when x = y =. 10.035 miles

or hours ;
and since the fugitive went 81 miles more, the

value of x and y = 10.035 gives the greatest associated

service of each horse.

8. Tradition says that a certain king erected a solid

structure of stone 20 (a) rods long, its width and height
alike

;
that his successor, or the second king, erected two

structures, the one 12 (b) rods long, the height and width

alike, the other 12 (b) rods long, 8 (c) rods wide, and as

high as the one last mentioned. His successor, the third

king, converted all of the three previous structures into

two of his own, the one a complete cube, the other 8 (c)

rods wide, and of that uniform height of all the structures

of the second and third kings, and as long as high, it being
understood that the mere names, width and length, are

interchangeable when necessary.
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The question is the height of the first king s structure,

what it might have been, and whether it existed at all, if

the second king built his less than 12 rods high.

The negative values of any quantity being impracticable

within this problem, the study of the function at negative
values of the variables bring out very peculiar properties,

which are best shown by a diagram.

9. (a.) For a certain purpose two cubical cisterns, A
and

_Z&amp;gt;,
are needed, and one a rectangular prism, C. The

cubical cisterns, A and B, are to have, combined, the same

capacity as C. (7 must have one linear dimension 15 feet,

another the same as that of cistern A^ the other the same

as the cistern JB. A well-informed contractor agrees to

make the cistern JS for a stipulated sum. The other party,

designing to receive the largest possible cistern for the fixed

sum, studies to vary the size of the cistern A. Required
to know all the dimensions of the three cisterns when the

one here contracted for is the largest possible.

Ans. A, 5 X 2 * = 6.299 feet.

B, 5 X 4* = 8.025 feet.

(.) Since either of the cubic cisterns can have a linear

dimension 8.025 feet, if one be made only 7 feet, required
the linear dimensions of the others.

(c.) If the two cubic ones are equal, how large are

they?

(d.) Do all the cisterns become of no capacity if either

one does ?

10. (a.) A balloonist being asked to give some account

of the heights and distances of his latest ascension, said

that y, conditioned as follows, was his height in miles every
where on his voyage over the level country, while x was

his distance by horizontal measure in miles from his point
of beginning to rise, viz. :

48 y = 192 x 88 a 2 + 16 x 3 x 4
;

11*
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in which we have F y =fx, and implicitly y =f x, and

in this simple nature of F y it is evident we may easily

express y / ce, which is the function of x that is signifi

cant in the problem. Required the prominent points in

the history of heights and distances ofthe voyage, such as :

(b.) What was the distance made at the landing ?

(c.) What and where was his greatest height, if there

was any greater than all others ?

(d.) To determine if, after first descending any, he after

wards ascended, and where, and being how high he com
menced any second ascent ?

(e.) To determine if, in rising the second time, he went

up to the same greatest height to which he had ascended ?

(/!) How far apart were any two places at which he

began to descend, measured on the ground line ?

(g.) Where in the voyage he rose most directly up
ward ?

(A.) How far from the point of starting, ground measure,
was he at each of his greater heights ?

(i.)
If he had gone in a straight line in the direction he

first started, how high would he have been when 200 feet

from his starting point, ground measure ?

(j.) Had he risen out of the earth and descended into

it after alighting, would the function indicate the law of

his course beneath the earth s surface ?

(&.) Specify the term in the function which intimates that

he must rise. Ans. 192 .:.

(7.) Specify the term which intimates that he must

finally come down. Ans. a-
4

.

(m.) Specify the term which intimates the probable

originating of a second place of rising ; probable, because,

in the generalization of the constants, such term might be

neutralized by another one just equal to it in value, with

an opposite sign.

(n.) To what distance below the earth s surface does the
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function indicate the law of his course, including the con

sideration of x when negative ?

(o.) Is there any thing symmetrical between the first and

last halves of the voyage ?

(p.) If the sign of every term in the function be changed,

is the voyage indicated as a dive below the earth s surface,

and a final emergence from it ?

(q.) Then what are the presumptions about the course

before and after diving ?

The first dif. coef. is of the third degree, but may be re

solved by trials with integral numbers for x.

The presumption has been that this aerial voyage was

performed in one perpendicular plane ; but it will be per
ceived not to be essential if the ground line, however tor

tuous, is considered to be beneath the voyage track, and

measurable like a straight line.

(r.) It is required to alter the ascertained y =ff x (per

haps by factor common to every term), so that the greatest

heights may be expressed as at 3^- miles, and all other

heights in proportion.

(s.) Need such a change alter the distance of the

landing ?

(t.)
It is required to modify y =ff x so that the place

of the landing may be 15 miles, without affecting the

heights as first conditioned.

(u.) It is required so to give out the F y that the place

of landing may be 14 miles, and greatest heights 2 miles

in the same connection.

11. (a.) There is to be determined the size of a square

piece of land, which it is proposed to enclose with a fence,

at the cost of three or a times as many dollars per rod in

length, as is the worth of as many square rods of the land

as each of said square rods is worth dollars
;
and the cost
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of the whole fence will be 60 or b dollars less than the

the worth of the land, and the land the smallest possible.

Let y = the number of square rods,

and x = the number of dollars per square rod
;

then 42/5 = the number of linear rods round
;

and 4 a y\ a;
2= the dollars cost whole fence ;

then 4 a 2/5 a
2 xy + b Q

y (1.).

dy 8ay*x y
and 1

dx x2ax*y *

the numerator being = in case y = max. or min.,

... y = 64 a 2 x\

by substitution in (1.)

and 2/:= 64 2 - - =64 - =202.44;\32aV \32/

/. one side = 13.974 rods.

But to ascertain beyond doubt whether we have cer

tainly either a maximum or minimum, and which, we must

deter

had:

determine whether is zero, or positive or negative ;
we

d y & a y* x y

x x

d z
y _ (x 2ax 2 y~)X(8ayrfar + 4aary~rfy d y)

&quot;

dx *
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(x

multiplying terms and dividing by d tc, we have,

d*y 16 a 2 z 2
-f y ay\x dy

48 a 2 b I

the numerator 01 which = ---

and therefore second dif. coef. is positive.

/. y is found at a minimum.

.*. x and y are determinate by the concurrent equations ;

4 a ys a;
2

a; y -|- ft = 0,

8 a 2/2 a; y=zO.

NOTE. In consequence of the length of the above expression for ^J
/

, we

have expressed the same in two terms having a common denominator ; this

accounts for the signs of 8 ay 5 x -j- y-

(b.) Required the size of the lot when the least number
of dollars is paid per square rod for it, and what that num
ber of dollars would be.

SECTION XVII.

FUNCTIONS OF TWO INDEPENDENT VARIABLES : THEIR
DIFFERENTIATION AND THEIR MAXIMA AND MINIMA.

148. The mode of notation by which we may cite a

function of two independent variables has been (Art. 136)
shown to be f (x, y) = z. From the circumstance of
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identity we must, therefore, have df (#, y) = d z. Sinc.Q

z may vary on a variation of x
;
and since at the same

time y need not vary on account of its independence,

we express this variation of z with respect to x, by differ

ential coefficient, as
;
and the variation of z with respect

dy dz
to y by differential coefficient, as .

There is, then, no better way for expressing, beyond

doubt, the whole differential of z with respect to x and to

y, by general notation, than by (d z), or

dz dz
a x -\ d v ;

dx r d y
y

which becomes very intelligible if we remember that in a

common case off x = y, df x might have been cited as

- d x, but which was unnecessary. In all particular cases,
d x

however, in this section, we shall have use for the expres

sion of only the dif. coefs. and . Although we ex-
dx

,

d y dz dz
press the whole differential coefficient of z as 1

,
we

d x dy
use the signs in the general sense

; particular conditions

may render either, or both, negative in value, although the

amount of the change of value of x and of y may be

positive.

149. In differentiating a (function of x, y) = z, we

may conveniently express the dif. coefs. and in suc-
d x d y

cessive equations, that variable being considered a constant

with reference to which we are not differentiating the equa

tion. Their algebraic sum is the total differential coeffi

cient required.
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1. Required the whole dif. coef. of 3 x^ y -\- x = z.

Ans. + -- = 6 x y + 1 + 3 a;
2

.

dx dy

2. Required the whole dif. coef. of = z.

y

d z d z y x
Ans. = .

dx dy y
2

3. Required (d z), or whole differential of - - = z.

A
d z J i

d z J / 7 \ y dx 3y* dy xdy
Ans. a x -4 ai/=(az)= -.

dx dy (3y
2

x)*

4. Required the whole dif. coef. of 15701 xy-\-ax
2= z.

150, It is useful and quite important to extend Taylor s

Theorem to embracing a development of a function of two

independent variables, the condition being that each varia

ble may concurrently take an increment or decrement, or

one variable an increment and the other a decrement;
which condition must embrace the case of variation limited

to one of the variables.

151. In the functionf (x, y) = z, if x take the incre

ment A, the function will become/&quot; (x -\- A, t/), y remain

ing unchanged, since it is independent of x : then, by Tay
lor s Theorem,

/(a; + A, 2/)= S + ^A+g. ;^+,etc. (1.).

But if y also take an increment #, then z in the above

expression becomes changed to

. d z d* z k*
,

d* z 3

z H Jc A . . k etc., (2.).r
dy dy* l.2~dy* 1.2.3

so that in place of z in (1.), we must substitute the whole

of (2.), and in doing so after we have passed 2, we must
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for put, in (1.), the dif. coefs. (with respect to ic),
d x

of every term in (2.) ;
that is, we must substitute

.
-

,1.2

dx 3 dx 3 dx* 1.2

and so on. Before, however, making these substitutions

for convenience only, and not as an algebraic act, let us

agree to write

d
d z

d d2 z
&quot;

for-^-*. T^for-^,
dydx dx dy z dx dx

P d&amp;lt;lz

and, generally, g p for

153. Hence the result of the proposed substitutions in

(1.), will give us

/(,+ **?.+ *&amp;gt;&quot; +
^2 7

^ 2 2 A 2
. d* Z A 3

^ J
. . -[-, etc.

;

dx
~
dx* l.*~4x* 1.2.3

dz
7

d*z d*z kh*
Jc -\ kh-\ -. K etc. ;

dy dydx ^dydx* 1.2 T

d* z & 2 d*z k*h
. . (-, etc.;

dy* 1 . 2 dy*dx 1.2

d 3 z

[-&amp;gt;

etc-

dy 3 1.2.3

+, etc.
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The foregoing is the development, required by Taylor s

Theorem, of a function of two independent variables, on

each of them undergoing a change of value.

153. If every term containing k as a factor, disappear, as

when k should be zero, then the development reverts to

one for a single variable h.

151, If, however, h and k be negative, all those terms in

the foregoing development where h or k occur at even

powers, will evidently be positive, the others where h or k

stands without the other will be negative ;
but since the

development is supposed to hold also for

F (x h, y + k),

or F (x + h, y k),

the terms in which h and k are factors together must be

ambiguous, in the development, for it must be doubtful

whether h k arises from A X k or from -j- h X -\- k.

155. Whenever z, in a case off (#, y) = z, is at a maxi

mum, we must have the condition

and consequently

(
if A If

ft) + $ (llf A. 2 -^f- A ft+ -!-
\ dx dy J

2 \dx* dxdy
r
dy*

-f- etc.
&amp;lt;

0.

Now, since there is no reason why h and k in the above

expression may not be alike, or each A, the above inequa
tion may be written

/ dz d z\ , , /d 2 z d 2 z d z z\

( r. #*+* fir&amp;gt;

2
J^+,T&amp;gt;

+ etc
&quot;&amp;lt; 0;

12
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this condition being similar to that in Art. (102), we infer

by the same reasoning that

d z d z = 0,dx dy

which cannot be for both the signs unless

d z d z- = and =
;

d x d y

it being observed that owing to the independency of the
d z d z

variables, and^the distinctive terms and depending

severally on those variables, we are not entitled to election

of signs like

indeed, one of these terms need not exist (Art. 150, 153),

but the demonstration must hold. Whatever term contains

d y, must have contained k as factor.

Expunging, then, from the last inequation the terms 0,

the condition of z a maximum is,

and in the case of z a minimum, we should have derived in

the same way,

a

Now x and y, and therefore z, and all the coefficients in

fulfilling the above conditions, have determinate values
;

it is, therefore, determinate which of the last two inequa

tions prevails in any given case, if we can avoid the com-
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plexity of the ambiguous sign . Let us represent the

terms within the parenthesis by

A 2 B + &amp;lt;7,

B 2 B*
adding == to the terms between the brackets, the

expression becomes

A

where the binomial is certainly plus, so that (since A and
C agree in sign) if

f^ R 2

-&amp;gt;-,

that is, if A C B*
&amp;gt; 0,

the whole expression within the last double brackets will

agree with A in sign. Hence, if

there is certainly a maximum or minimum, the former if

l~
I &amp;lt; 0, the latter if

^ &amp;gt;
0.

156. A function of two independent variables, x and y,

may have a maximum as to one variable, and a minimum
as to the other, at the same time

;
or a maximum or mini

mum as to one variable, and neither as to the other.

157, In functions of two independent variables, there are

evidently eight conditions of value in regard to possible
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related positive and negative signs of the function and

each respective variable (see Art. 97), that is, as many con

ditions as the associate quantities 2, rb cc, db y can be

written in different ways, with the single sign plus or minus

to each severally and independently. When either 2, x, or

y is at zero, such is a value of transition from one sign to

the other; neither sign being significant when placed
before zero.

SECTION XVIII.

PROBLEMS INVOLVING FUNCTIONS OF TWO INDE

PENDENT VARIABLES; AND CASES OF THEIR MAXI
MA AND MINIMA.

1. A person appropriated one day 10 dollars in payment
for provisions, that were to be distributed in equal portions

to some needy families
;
the next day he benefited, by gifts

of clothing, 27 times as many families as each of those

families of the previous day received pounds of provis

ions
;
on the third day he benefited, by fuel, 8 times as

many families as those provisions had cost cents per

pound. Required the smallest number of families, in all,

which by any possibility may have received his aid on the

three days.

Let x = number of pounds to a family,

and y = value in cents per pound of the provisions,

and z = the whole number of families required ;
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1000
,

d z

?; + 2 =
r,

. __^_L8 = .

x y
2 dy

d z d z

Now in case z = max. or min., we have = and =
dx dy

0, from which we derive x 3.31, y = 11.17, and z =
215.71. Now to determine whether this is a maximum or

minimum value for 2, we have

2000 d 2 z

x 3
y dx 2

2000 d 2 z

1000 d 2 z

and
x 2

y
2 dxdy

d 2 z d 2
y d 2 z .

so that for - X ~a
-

&amp;gt; 0,
d x* d y

z a x a y

2000 2000
,

1000
&amp;gt;we have - X - H - -
^&amp;gt;

u ;

d 2 z 2000
also

&amp;gt; 0, that is, &amp;gt; ;

d x 2 x 3
y

hence the value 215.71 for z is a minimum.

Rational considerations will evidently, in the above case,

enable us to determine whether it be. a maximum or a

minimum for 2, if there be but one of them ;
for in the

case of

we see at once there is no limit to the greatness of z when

either x or y becomes excessively great ;
and - - in posi-

12*
Xy
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tive values of x and y is never negative, however great x

or y may be, and consequently however small the term

may thus be rendered.

2. It is required to divide the number 48 into three such

parts that the continued product of the first, the second

power of the second, and third power of the third, may be

the greatest possible. Ans. 8, 16, and 24.

3. A contractor agrees to fence the four sides of a rec

tangular field, but with two kinds of fence, one worth 78

cents per rod, the other worth $1.25 per rod, and opposite

sides to have a like fence
;
and he agrees to dig out rocks

from one square rod of the field, this work being worth at the

rate of $7912 for the whole field. Required the length

and width of the field, the cost of digging out the rocks,

the cost of the whole fence on the sides and on the ends
;

when the sum of money that pays for the whole is the

smallest, and required that sum.

Ans. In part, width of lot 12.585 rods.

4. A manufacturer of tin ware agrees to construct a tin

box of rectangular sides and bottom, and without a top,

and to hold just 5^ cubic feet, with the least sheet tin

possible. Required the dimensions and surface.

Let the bottom be x by y, then the height ;
then

xy
if z =. the surface, we have

11 11
z = x y + - + --

Ans. x must = y = (11)* = 2.224 feet, and height =
(11)1 = 1.112 feet, /. the box is one half of a cube

cut parallel to the bottom. But the whole cube

might be cut any how by a plane through its centre,

without a variation of the amount of surface or of

the contents.
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5. A miner in California dug uniformly some ounces

of gold per day, for some days, when, becoming one of

a company, consisting in all of as many miners as he had

worked days alone, he received his share of 500 ounces,

when the entire company changing to as many miners as

he had dug ounces per day alone, he received his share of

342 ff | ounces. After giving just this information to a

speculator, the latter agreed to pay him for 185 ounces of

gold for his all. Construing these conditions most favora

bly to the speculator, can he gain any thing ?

Ans. He must lose the value of 18^ ounces.

6. Some farmers bartered animals : in exchange for 5

heifers, Smith gave Jones 7 sheep and 3 dollars
;
Johnson

gave Taylor 4 heifers and 2 dollars for 6 sheep, and Simp
son gave Thomson a heifer for a sheep. After these trans

actions an army agent purchased all these same animals as

of an approved and standard value, each kind
;
which gave

rise to conversation among them as to who gained in their

mutual trades. The three who gained, each agree to mul

tiply the number of dollars gained, by itself, add the pro
ducts together as so many dollars, and give this sum of

dollars to the person who would tell them what it would

be when it was the smallest it could be for any value of

those animals, as that standard value
;
and required that

sum.

If x = number dollars value of a sheep,

and y number dollars value of a heifer,

and z = that sum of money required ;

then z(lx 5?/+ 3)
2 +(6^ 4y 2)

2
-+-( y)

2
,

or, all the signs of the quantities within the parentheses

may be changed, since it will not affect 2, and since
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we cannot presume that x is either greater or less

than y.

Ans. A heifer, 5 dollars
;
a sheep, 3; Smith, Johnson,

and Simpson gained 1 dollars each
;
sum required

8 dollars.

The following problems, (a.) and (5.), contain each but

one independent variable :

7. (.) A carriage wheel, which was in circumference 5

times the length of step of a certain pedestrian, and 1 foot

more, the length of that step being 2 feet, ran once over

a route 10 times as long as that between Dock Square in

Boston and a certain station A, and then ran 1000 feet more.

A second wheel, of such size that it would revolve 500 times

in going once between Dock Square and station A, ran

once between Bowdoin Square and station ./?, a distance

equal to 1200 of those steps. Required the distance from

Dock Square to A, when 2, the sum of all the revolutions

of the two wheels, is a minimum or maximum.

Ans. Distance 1679 feet, and z is a minimum, it being
then 2501.4.

(b.) A carriage wheel, which was in circumference 5

times the length of step of a certain pedestrian, and 1 foot

more, ran once over a route 10 times as long as that be

tween Dock Square and a certain station A (which was

a distance of 1G79 feet), and then ran 1000 feet more. A
second wheel, of such size that it would revolve 500 times in

going once between Dock Square and station A, ran once

between Bowdoin Square and station J?, a distance equal
to 1200 of those steps. Required the length of that step

when the sum 2, of all the revolutions of the two wheels, is

a minimum.

Ans. Step 3.28 feet; now z is a minimum, at 2500.8.
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The following problem (c.) is the same as (a.) and (b.)

preceding, except that it combines in one (function of x

and y) = 2, each of the same variables as in (a.) and (b.) ;

thus making two independent variables :

(c.) A carriage wheel, which was in circumference 5

times the length of step of a certain pedestrian, and 1 foot

more, ran once over a route 10 times as long as that between

Dock Square and a certain station A, and then ran 1000

feet more. A second wheel, of such size that it would

revolve 500 times in going once between Dock Square and

station ^4, ran once between Bowdoin Square and station

j#, a distance equal to 1200 of those steps. Required the

distance from Dock Square to*-4, and the length of that

step when z, the sum of all the revolutions of the two

wheels, is a maximum or minimum.

8. (a.) A certain perpendicular flag-staff, 129 feet high,
stands on a level plain ;

a stake is driven into the ground
to mark a point 60 feet to the south of the base of that

staff, which point is joined with the top of the staff by a

straight cord. Another such flag-staff, 97 feet high, stands

82 feet to the westward of the first, and its top is joined

by a cord to a point at the surface of the ground marked

by a stake 40 feet to the east of the first stake. Required
to determine the nearest distance between one cord and

the other, either produced indefinitely if necessary, which

might be the case in a generalization of the conditions.

It will be useful, in the solution of the above problem, to

conceive three arbitrary planes cutting each other at right

angles, to each of which any point in either cord may be

referred by perpendicular measurement
; through the me

dium of right-angled triangles, an expression may be found

for a perpendicular Jine from one cord to the other
;
this

line must be a minimum. By means of a solid diagram,
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constructed of pasteboards for planes and threads for lines,

there is much simplicity in the solution.

(b.) Required to determine the diameter of the smallest

sphere to which the above two lines are tangent, and

whether this diameter is the line required in the foregoing

question.

The following problems trespass upon the rule hitherto

adhered to, not to propose geometrical and trigonometrical

problems, except the most elementary.

9. A sentinel has received orders from his commanding
officer to visit in succession three important posts, A, _/?,

and (7, and return from each visit of each to his camp.
The post A is 90 rods from 7?, 13 23 rods from (7, and C
72 rods from A. But he may place his camp where he

pleases. Required the distance of his camp severally from

A, B, and (7, when a round of visits is made with the fewest

steps, and consequently any number of rounds, the ground

supposed level.

The following problem is to be considered general, with

reference to Sections XII., XVI., and XVIII.

10. A plain is level, and the sight over it is unobstructed

by objects : on it is a circular course 80 rods in diameter.

A procession was once seen marching round this course, in

which was a person carrying a banner 4 feet square, and

holding it perpendicularly, with its centre 9 feet above the

plain, and 40 rods, horizontally measured, from the centre

of the course. The banner was constantly held with its

plane agreeing with the radius of this course, and hence

invisible to a person at the centre of the course. But out

side there was a stationary observer, so situated that his

eye was 70 rods from the centre of the course, and 9 feet

above the plain. As the banner was thus carried entirely
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round this course, its two sides being successively exhibited

to that observer, it is probable that there&quot; were two loca

tions, one toward the right, the other toward the left of the

observer, where that banner appeared the largest object, as

when it should be projected, when any where on its circuit,

to form a portion of the surface of a sphere, of which the

observer s eye is at the centre, such surface being assumed

at any distance whatever. Required the distance in rods

from the eye to centre of banner, when the banner ap

peared largest.

The planet Yenus gives her maximum light to the earth

on conditions not much unlike the above.

SECTION XIX.

DEMONSTRATION, OF THE GENERAL FORM OF THE
DEVELOPMENT OF / (x -f- A), AND, OF THE DIFFER
ENTIATION OF CERTAIN FUNCTIONS.

158, We have deferred to the present section a very

elementary and important demonstration in regard to the

form of the development of any function of x whatever,
when x becomes x -\- h, and our earlier endeavors to illus

trate the nature and rules of differentiation were at a dis

advantage on account of the omission.

Let fx be any function of x, and when x becomes
x -|- A,f (x -(- A) will have a general development of the

form

f(x + h) =fx + Ah-{-gh*+Ch*+, etc.,

in which A, .Z?, (7, etc., are coefficients containing x and

constants, and each may evidently be an aggregate of
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certain sub-terms, etc. The form is intended to show how
h appears in the development.

It is useful to prove the foregoing general development
without reference to the binomial or any other theorem.

One of the terms of the general development must befx,
in which h in no respect exists as a factor or otherwise,

because when h = 0, and/&quot; (x -|- h) becomesfx, the de

velopment ought to reduce to

Nor can there be any term but fx in the development
which does not contain A as a factor.

None of the indexes of h can be negative ; because if h
have a negative index, h may be made to appear as a

denominator of A, JB, or (7, etc., with that index positive.

Such term would, therefore, become infinite when h = 0,

but when h =. the term itself ought to become 0, because

the condition of the equation becomesf x =fx, and^ic
is not necessarily infinite, nor has it any restricted value,

nor any value, therefore, that ought to be restricted in the

development. Nor can there be in the series two terms,

each infinite and with opposite signs, because they would

not be equal infinites unless they should be rendered so

by the vanishing of h at like powers or like rates, and in

such case such two terms become one in the series.

None of the exponents of h can be fractional, because

of one factor of such term, a root is indicated to be taken.

Now all these terms of the general development are sup

posed to be numerical; and the roots only of particular
numerical quantities are rational, such as 1, , ^ 4, 16, 8, 27,

etc.
;
the roots of intermediate quantities may be irrational

or inexpressible in number. Therefore the roots of numeri

cal quantities in general are irrational. This truth is not

affected by the consideration that the roots of powers are
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indicated by fractional exponents. Now if a root of h be

irrational, the term which contains it is irrational. Not

withstanding what the character of the other terms of the

development may be, f (& -\- h) being equated with an

expression, one of the terms of which is irrational, is itself

irrational in general values / hence a restriction is imposed

upon the values of the development of / (x -f- h), and

upon/ ic, and such development is not general.

The indexes of h in the successive terms, are the natural

series of entire andpositive numbers, 1, 2, 3, etc.
;
for ifA

be the coefficient of h at the lowest power or a, we may
write the development thus :

a +, etc.,) h
a

;

but which for simplicity we will write thus :

A + P

wherefore if a is not a unit, we have/ (x -\- h) fx ren

dered irrational, and h itself irrational, and consequently
each at restricted values, which are opposed to the hypothe
sis

;
therefore a is unity.

Since a is unity, we have

or, rather,

Again, as before,

f(x+h) fxAhi=
13
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but which, for simplicity, we will put

/ (x + A) fx Ahi=(+
i = A;

which imposes restrictions against hypothesis unless 5= 2,

for when 5 = 2, we find g^ri = 1. Now, by the continua

tion of this course of reasoning, we may show c = 3, etc.

Therefore the indexes, etc.

If h be negative as inf (x A), it is evident that the

general development is the same in form, except that the

terms having h with indexes odd, will be negative.

The coefficients A, B, (7, etc., in the general develop

ment, are evidently functions of ce, but are not as yet, ex

cept A, differential coefficients. (Art. 99.)

This development being general, holds for such particular

cases as render one or more of its terms imaginary.

Although authors are very reserved, and some of them

entirely silent, respecting the possible value of h in this

development, it is plain that it must be an infinitesimal, or

indefinitely small. If in the formula, 2 A be substituted

for A, it becomes

f (
x _L. 2 A) =fx + 2 A h + 4 B A 2

-f 8 C A 3 +, etc.,

which shows that the coefficients A, J5, (7, etc., are affected

by, and rendered dependent upon, a change of the value

of A.

159. By transposing the first term in the general de

velopment off (x -f- A), we have

/(a- 4. A) fx = A A + 7? A 2
-)- &amp;lt;7A

3 +, etc.

Now the first member of this equation is the amount that
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f x changes by virtue of A added to the variable x. Divid

ing by A, the increment of x, we have the fractional or

proper form of expressing the ratio of the change of value

of the function to that of the variable, that is,

, etc.

Now when h 0, the numerator may take the designa
tion dfx (or iffx = ?/),

of d y, and the denominator h

must take the designation d x.

&quot;dx~

which we may enunciate thus : the coefficient of the second

term of the general development off (x -j- h) is the dif.

coef. derivedfromf x. (Art. 68.)

160. The form of the general development of/ (x -f- A)
furnishes the means of a formal demonstration of the

method of differentiating the product of two or morefunc
tions of the same variable.

Let y and z be functions of x in the expression

u = a y z.

By changing x into x -\- A, the function y becomes (desig

nating by y the new value of y)

, etc., (1.).

and the function z becomes

z 1 = z + A 1 h + B r A 2
_j_ C&amp;lt; A 3 +, etc. (2.).

Hence, when A = 0, we have from (1.),

y y _ dy __

~h~ dx~ ^ ;
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and from (2.),
z z d z

- ___ A I

h
~
dx~

Designating by u the new value of u received in conse

quence of the change of y and z, and multiplying the

product of (1.) and (2.) by a, we have

u r = a y z -\- a (A z -\- A 1

y) h -|-, etc.,

==ay + a(^s + ^y) h +, etc.;

therefore a ( z
-\ y ) being the coef. of the second

\d x d x J

term of the development of u
,
we have

d u d y d z= a z -
-\- aii :

dx dx y dx

.-.du = azdy-\-aydz. (3.).

Hence, to differentiate the product of two functions of
the same variable, we must multiply each by the differential

of the other, and add the results.

161t It will be easy now to express the differential of a

product of three functions of the same variable. Let

u = w y z

be a product of three functions of x
; then, putting v for w y,

the expression is

U =2 V Z\

hence by (3.),

du z dv -f- v dz,

but v = w y ;
therefore by (3.),
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consequently by substitution

and it is plain that in this way the differential may be found,

be the factors ever so many ;
so that generally, to differen

tiate aproduct of severalfunctions of the same variable, we

must multiply the differential of each factor by theproduct

of all the other factors, and add the results. (Arts. 74, 75.)

163t If it be required to differentiate an expression con

sisting of several functions of the same variable combined

by addition or subtraction, it will be necessary merely to

differentiate each separately, and to connect together the

results by their respective signs. For let the expression be

u = aw-{-by-\-cz -(-, etc.,

in which w, y, and z are functions of x. Then, changing x

into x -\- h, and developing,

w becomes w -\- A h -\- It h*
+&amp;gt; etc.,

y y + A h + B h* +, etc.,

z z + A&quot; h + &quot; h* +, etc.,

... w u-\-(aA-{-bA -\-cA&quot;-{-,etc.),h-\-,etc.,

. .du = aAdx-\-b A d x -\- c A&quot; d x -\-, etc.

But A dx = dw, A dx = d y, A&quot; dx = dz, etc.
;

-bdy-\-cdz~\-, etc.
;

that is, the differential of the sum of any number of func

tions is equal to the sum of their respective differentials.

(Art. 76.)

13*
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SECTION XX.

MACLAURIN S THEOREM, AND ITS APPLICATION.

103. This theorem gives a general mode of developing,

expanding, or changing the form of, some algebraic (and

other) expressions by a series arranged with reference to

the positive ascending powers of any one specific quantity
in them, which may be assumed for the purpose.
A function having a single variable is such an expres

sion, and the variable may be selected as the specific

quantity in question. Since only the form is changed, the

value of the expression, or of the function (if it have a

value) must remain unchanged, except in marked excep
tional cases. If a function has no specific value, the new
form of it produced by this theorem must have the same

range of values, if the values are real, as the original func

tion. Sometimes the odd, sometimes the even powers of

the specific quantity become eliminated from the series,

because the coefficients of such terms must respectively

equal zero. If x be the quantity, or represent the position

of the quantity according to the ascending powers ofwhich

the series is to be formed, then the expression being called

a function of #, and A, _Z?, C&quot;, etc., being indeterminate

coefficients, successively, of the powers of a*, we have

y A + J3x + Cx* + Dx* + Ex* -f, etc.;

.-. = + 2 Ox + 3 D x* + 4 E x* +, etc.
;

d x

-=: 2 (7+2.3 J)x + 3.4^^ 2 +, etc.;
d x 2

?!?= +2.3J&amp;gt; + 2.3.4^ic+, etc. ;

d x 3
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.-. = 2.8.4^, etc.
dx*

Now, if, by making x = 0, we select the particular val

ues respectively for these coefficients, and the function,

which are not affected by the value of x, and place them in

parentheses to denote this, we have

1.2.3.4

Substituting these expressions for A, , (7, etc., the

series becomes

eto,

which is Maclaurin s Theorem.

Although, to derive these coefficients, x was made equal
to zero, yet by hypothesis they are such as the value of x

cannot affect
; therefore, in the theorem, x may be restored

to any value consistent with the function.

Otherwise :

Taylor s Theorem being,

,
dFx h

,
d*Fx h*

,
d*Fx h*Fx + - ------------K etc. ;dx 1 dx* 1.2 dx* 1.2.3
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if x = 0, it becomes

where the parentheses are used to intimate that x has this

restricted value, x = 0. These differential coefficients, in

parentheses, are constant, for in the actual coefficients of a

particular case applied under this general notation, x will

not be found. Therefore, h is no longer limited to the

value 0, but may be of any greatness ;
and since x has dis

appeared, we may revive it in h. We then have, calling

the original F x = y and (F x) = (y),

which is Maclaurin s Theorem.

1

1. Required the development of y = F x, viz.,

dx (a+ x)
z \dx

_ 2
^~

&quot;&quot;

a + z)
3

&quot;

\dx 3

_ 2.3

rfa; 3
~ ^

(o + *)
*

*

1 1 XX- X
&quot;

a + x a a 2 a 3 a 4

2. Required y = (#
2

-|- x
2
)

* in a series.

s.y = & + -*
&quot; 4

r r&amp;gt; i
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4. It is required to express in a series of the ascending

positive powers of x this function of ic, viz., .

a a a a a
Ans. =

&quot;2^^

~

s
x ic3

4~&amp;gt;
etc.

5. It is required to develop the algebraic expression

V (
2 + # 2

)
in a series with reference to the increasing

positive powers of b.

b* b* b e

Ans. V (
2 + # 2

)
= a H 1 &amp;gt;

etc.
2a 8 a 3 16 a 5

6. Change the form of as a function of x.
h a x

Ans.

b a x

c c / ax a*x* a 3 x 3

b ax b

7. Develop, if possible, y = a x 4
by Maclaurin s

Theorem.

y ax\ .-. (y) = ;

/. a *4 = 24a-- + 0,
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Whenco it appears that in this case the theorem does

not fail in truthfulness, but in utility. The development
is not a series.

8. Develop into a series y =.
l x

Ans. y = 1 + x -\- x
2

-|- x
3

-\- x
4

-{- , etc.

Whence it appears that the theorem fails to give an

equivalent substitute for y when 1
&amp;lt;^ sc, because the sub

stitute becomes infinite.

It may have been noticed that all the results obtained

in the foregoing examples might also be obtained by ordi

nary algebraic division or extraction of roots, or at least by
the Binomial Theorem.

But we ordinarily do not have an algebraic demonstra

tion of this theorem so general as to embrace develop
ments in case the indexes are fractional, denoting both a

power and a root, as f. Although this theorem embraces

the binomial, it is, therefore, more general. It is the foun

dation of other theorems like Lagrange s, and appears in

dispensable in the higher Calculus, and in trigonometrical

analysis.

9. Let it be required to develop

s+l

10. Let it be required to develop

a x + V~#

164, Binomial Theorem. If the expression (a -|- x)
n

be developed by Maclatirin s Theorem, the result exhibits

the Binomial Theorem.
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11. Let it be required to develop Fx, or y = (a -\- x)
n
,

according to the ascending positive integral powers of x,

or by Maclaurin s Theorem :

We have y = (a -f- x)
n

,
/. (y) = a n

,

2) (a

=(-!)( -2) a&quot;- ;

.-.
n=n(n l)(n 2) (n 3) ...(w n) (a-f )

n~ w
.

Now, y being^^ with reference to Maclaurin s Theorem,

/rfyx /dFx\ /d*y\ /d*Fx^we have (
--

)
=

(
---

; I
- -

)
= - -

), etc.; hence,
\dx) \ dx ) \dx*) \ dx z r

substituting the equivalents of these as found, we have

n\ n-i n(n\) n _ 2

y V T~ x)
2

n (n
_

i) (n
- 2 ) M_ S

1

\Jj t)C&amp;gt; \ * CLC
2.3

which is the Binomial Theorem, and n may be a whole

number or a fraction, or be negative or irrational. It will

be observed that when n is a whole number, since n n
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becomes a factor in the nth dif. coef., it renders it = 0, and

the series must terminate.

In case the index n should not be a whole number, but

should be a fraction like when in its simplest form, then

the differences -
1,

-
2, ... -

n, etc., by the* suc

cessive subtractions of the integral numbers 1, 2, 3 ... ft,

could never be reduced to 0, but would pass over in

going from -{- to values
;
and the series would never

terminate.

165, But the mode of developing, by Maclaurin s Theo

rem, a function of a*, is applicable as well when the func

tion is implicit. It may be observed that, when x is

made = 0, y being dependent will take some value in

constants corresponding to x = 0, which value is to be

substituted for y.

12. Let it be required to develop y according to the

ascending powers of x in

m
fdy\ ___J_.~~ ~

~d~x 3 2 3
&quot;

\dx

dx* (3y2 3)
a

dx*

. fg!^ 6X3 (*X &)__!!_.
Vrfx 3/

~
34 34

a; a-
3 a:

5

^i + 3T+J7+ ete -
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It may be observed that the differential of the numera

tor 6 y , this being a product of the two variables y and
dx

dy^dx as wfcll as
, being constant, and d^ y being

the differential of dy, is

which terms, as well as the others of the new numerator

which is being formed, are to be divided by dx&amp;gt;
as well

as the other member of the equation, which is now
d 3

y
;
hence we have, in the third dif. coef., as a factor

a x 2

dx dx d

Since y = when x= 0, all terms containing y as a fac

tor become eliminated in finding those dif. coefs. within

brackets.

13. Let it be required to develop y in b y
3 xy= b,

according to the ascending powers of x.

Ans. = l_-fiLaetO.
14. Let it be required to develop y in y

3 x a 3
(y-\-x)

= 0, according to the powers of x.

Ans. y= x ------- etc.
a 3 a 6

166, It should not escape notice that here is shown an

achievement, by the analysis of the calculus, beyond the

ordinary direct resources of algebra, in relation to the

resolution of equations, and is particularly available when
ever the series generated in the manner shown, is so con

verging that the terms of it may be readily summed with-

14
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out tediousness, as when the denominators, when there

are any, are large relatively to the numerators, or to &,

which may always be in a numerator, when the terms are

fractional.

Nor should it escape notice what may be accomplished

by the transformation of x into y, or y into ic, or of any
known constant into x or y, or by creating x at pleasure,

with the substitution of it for any term or quantity, for

the sake of the development ;
and of the means of equating

any unknown quantity situated as y, with others which

are presumed to be known.

It is useful to observe that these general analyses never

fail to embrace the truth of quite elementary conditions,

even when a series may fail to have place. For,

15. Let it be required to develop y in y 3 x 3 = Q,

according to the powers of x.

We have y = x, .-. (y) =.
;

dy_ _ 3;r 2 /dy\ _ ^

dx
3&amp;lt;/

2
&quot;

\dx)
~

-3x*

dx

dx*

dx*

. . y i=0 + ^ + 0+, etc.;

3z 8

where we are obliged to remark that the foregoing ^ ?

as well as the second dif. coef., in its general form, are

reduced, respectively, to 1 and 0, from expressions each

virtually
- when x = 0, by principles that will be fully
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demonstrated in the following section. At present it is

sufficient to say that

because both numerator and denominator become alike

when x = 0, and the second dif. coef., that is,

6a X 3 y
2 3 a 2 X 6y z=

when x and y are any how alike, without notice of the

circumstance that their respective values are 0, which

casually renders 9 y
4 = 0.

167. Maclaurin s Theorem fails to give a true develop
ment of all functious of a?, of which any dif. coef. becomes

infinite when x= 0. We know nothing of a development

by it, when x should be restricted to the value 0, and of

which any dif. coef. becomes infinite. And since in the

theorem, x in the position of all its ascending powers is

not, by the nature of the theorem, to be restricted to any

value, when &amp;lt;
x any such term, and, as will be seen by

a few examples, all succeeding terms become infinite.

Such, therefore, cannot be a development of a function

which is not necessarily infinite. Thus, if

y *,

dy 1
- = i

= co when x =. 0,dx 2*5

- = -- r= co when x= .

d x* 4*4

So, also, with a x J, (a x a;
2

) 1, b x i, etc. But the infi

nite dif. coef. might be deferred to the 5th, 6th, or the nth,

for the obvious reason that several successive subtractions

of unity from an improper fraction may be necessary be

fore the remainder becomes negative.
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168. In Arts. 151, 153, we have given the .development
of a function of two independent variables by Taylor s

Theorem. In the same manner in which we have derived

Maclaurin s Theorem from Taylor s as for one variable,

we may derive the development of a function of two inde

pendent variables by Maclaurin s. If in that development

(Art. 152) we suppose x and y each = 0, the develop
ment will become that ofF

(h&amp;gt; k) according to the powers
of h and Jc, or substituting in that development x for h and

y for k, since these may now have any value, we have

16. Let it be required to develop z according to the

powers of x and y in

z= ax* (b y 3
) y 2

(z
2 -i-

c)
2
.

SECTION XXL

DETERMINATION OF THE VALUE OF VANISHING
FRACTIONS.

109. We have, on several occasions, compared the rates

of change of value of two functions of the same variable,

for some particular value of the variable. In such case, the

variable may not only be expressed as x in each function,

but by hypothesis is to be the same #, and therefore is to

have a common value in each function.

When such two functions become, respectively, the nu-
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merator and denominator of a fraction, the case may hap

pen when, on the variable taking a particular value, the

fraction reduces to the form -
;
such is called a vanishing

fraction. This value is indeterminate in the abstract, but

determinate when we know its origin. The value of a

vanishing fraction does not necessarily vanish. The nu

merator and denominator vanish severally and independ

ently, or by independent rates of change.

1. On an occasion it cost a man 75 cents per mile to

travel
; however, of the whole number of miles travelled,

42 were without cost. If a sum like that expended in this

travelling, should be expended in the purchase of 25 times

as many pounds of the commodity C as he had travelled

miles with cost, what would have been its price per pound,
whatever the number of miles travelled with cost might
have been, even if it had been the least conceivable in a

fraction ?

Let x = number of miles travelled in all
;
then the price

per pound of C will be represented thus :

(x
-

42) 75 = 3 cents.
(x 42) 25

Here it is evident that, in case x = 42, the fraction re

duces to -; but its value appears to be 3 nevertheless. If

we watch the relative values of the numerator and denom
inator while, by a variation of a*, they are becoming ex

ceedingly small, it is quite evident that nothing disturbs

the ratio of their values.

2. A courier travelled 15 or a hours, at 15 or a miles

per hour, in a continuous course, when he travelled, in

return, just as many hours as miles per hour
;
we need

not say, as yet, whether or not he had accomplished just
his return, but a messenger was ready to, or did proceed

14*
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to meet him at a rate per hour equal to the excess of the

rate per hour of the courier s set-out, above the rate of his

return, per hour. Required to determine the number of

hours necessary for the messenger s travel, although the

distance necessary for him to travel were the shortest

conceivable.

Let x = the miles per hour of the return; then
2_2

= a-{-x = 3Q hours when x =
a x a x

15, and the number of hours required ;
and it appears

that the messenger has farther to go, and goes in less time,

the more a exceeds x. The numerator a 2 x 2
being an

expression of the second degree, does not vary uniformly
with a*, hence the quotient has a value that varies not

uniformly, but approaches a fixed amount for x = a.

3. Required the value of when x 0.
X

ax a
Ans. - = = a.

X 1

170, In the cases which have thus far been presented

we have evidently obtained the required value of the van

ishing fractions by reducing the fraction to its lowest

terms, or by simple algebraic processes.

4. Required the value of
*
~^-_wben x = a. In

\/ X &quot; ~ Qt

this case, if we divide the numerator and denominator by

and the resulting quotients by Jx a, we have

the following :

x a x a

__ a 2
) (J* -f Jo

&quot;_? _ rr when x = a
,

. (Jx + /a)

because we have removed all negative quantities from the

x + a
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denominator
;
to produce the same result by one divisor,

it must be

a divisor that is very far from being quite obvious. So that

it appears that these algebraic processes cannot have in

general view the reduction of the fraction to its lowest terms,

but to effect a transformation of whatever kind that may,
as above, remove ambiguity. It is better, therefore, to

adopt a direct and uniform process for determining the

value of a vanishing fraction : this process the calculus, by
differentiation, supplies.

171. Since all algebraic functions of a variable must

vary in value when the variable does, for the variable is

immediately eliminable from all expressions containing

it, which do not vary when the variable does, such as

b -\- (a a) a 3
,

-
, etc., it follows that the sue-

x -\- 60

cessive differential coefficients of a function cannot all be

in value, or vanish for a particular value of the variable.

In the case of fractions vanishing at a particular value

of the variable, we have evidently two functions of one

and the same variable, and which need not be like in form,
and which therefore ought to be designated by the dis

tinctions of, say, F x for the numerator, and fx for the

denominator
;
this gives us, in view of the hypothesis,

Fx

Now, in case F x andfx are of a nature to be developed

by Taylor s Theorem for the value in question, let them
be respectively developed, or let us entertain the sugges
tion of each of their values moving out, as it were, from.

zero by the nearest appreciable amount, as when x should
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be x -f- h ;
then we have, instead of zero for F x, and for

/&quot;ic,
certain indefinitely small compared quantities, if one

or the other should not still remain zero
;
in which case,

we have what we seek for, in or co
,
as the value of the

fraction. Understanding, now, that F x is y in Taylor s

Theorem, and that/ x is some other and a different y, and

agreeing, for convenience, to represent

*JL byy, Jl*. by i/ ,
-

d3y
by //&quot;,

etc.
dx J r dx 2A.2 J2 d* 3 .1.2.3

J l

dy d 2
y d 3 y

where the number of accents is made to agree with the

order of the dif. coefs. in numerical name, we have

Fx+p h+p&quot; h*+p &quot; A3 + etc.

fx + q h + q&quot;
h* + q

&quot; h 3 + etc.

Now, since by hypothesis l&amp;lt;

J x = Q,fx = Q, at the

value in question, they severally become of no account in

the fraction of the development, and may be expunged, so

that we have, after dividing by A,

F (x + A) p +p&quot;A+p&quot;
; A 2 + etc.

^

f (X + A) ? + 0&quot;
A + j

&quot; AZ -(. etc.
J

and when A = 0,

Fx P

as the required value of the vanishing fraction
;
but pos

sibly may become ,
in which case we may expunge

- from equation (2.), which then becomes, after divid-
tf

ing by A,
&quot; &quot;
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which becomes, when h = 0,

Fx
p&quot;

as the required value in case it does not become -
;
in

which case expunge from (3.), and divide by A, and we

have, when h = 0,

Fx _ p &quot;

Jx
~

&quot;p

as the required value, if it is any thing else than -
;
and so

on, so that we have the following rule for determining the

value of a fraction of which the numerator and denomina

tor vanish when x takes a particular value :

172. For the numerator and denominator substitute

their first dif. coefs., their second dif. coefs., and so on,

till we obtain the first fraction of which both numerator

and denominator do not vanish, for the required value of
x ; this fraction is the value required.

We have already shown that we must arrive at such a

fraction.

5. Required the value of - - when x = a.

(3 a 3 a;)
3

pm _ 24 (a
-

x)
Ans. - = = .

qin 162 162

6. Required the value of- when x = 1.
4 x 3 12 x + 8

Ans. co , by 1st dif. coefs.

X 3 _ a 3

7. Required the value of- when x = a.
X z 2

Ans. 3 a, by 2d dif. coefs.
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8. Required the value of - -when x = 1.

(1 *)
3

Ans. --- by 2d dif. coefs.
3

9. Required the value of
4j^ 6a . a ^TT3

wben x == 1 -

Ans. &amp;lt;/&amp;gt; by 2d dif. coefs.

173. Inasmuch as we have deduced the process for

Fx
finding the value of when it becomes -, we have, in

fx o

effect, found the process for finding the value of - - X

(of which expression the first factor is certainly 0, and the

second is co), that is, for finding the value of a product of

two functions as factors, one of which becomes and the

other co when the variable takes a particular value. We
have only to take the first as a numerator and the recip

rocal of the second as denominator and we have the van

ishing fraction just investigated.

10. Required the value of (x
n

1) X -- when x= I.

Ans. n.

174. The foregoing demonstration of the process for

finding the value of a vanishing fraction embraces the

principle of finding the value of a fraction which becomes

^ under the same condition
;
for any fraction is the same

in value as the reciprocal of its denominator taken for

numerator, and the reciprocal of its numerator taken for

the denominator. Thus, if

then =
fx x _

Fxfx Fx
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We remark that evidently the reciprocal of an infinite

quantity is zero, i. e., = 0.

11. Required the value of ---- - - when x= a.
a x aa x &quot;

Ans. 5 a.

175. Lastly, the demonstration ateo embraces the case

of determining the value of the difference of two functions,

each of which, for a particular value of the variable, be

comes infinite
; for, in subtraction, any remainder is equal

the fraction of which the numerator is the excess of the

reciprocal of the subtrahend above the reciprocal of the

minuend, and the denominator is the reciprocal of the

product of minuend and subtrahend. Thus, Fx being co,

audfx being co,

Fxfx 1

11. Required the value of--- when x a.
x* a 3 x a

Ans. to.

176, Whenever an infinite quantity is generated by the

denominator of a fraction becoming 0, since =
-f- 0,

it is evident that such infinite quantity has the ambiguous

sign ,
and becomes co .

177. The same characteristics of different values belong
to infinite quantities that belong to finite quantities and to

zero, dependent upon their mode of generation, or of rela

tion to each other by factors, by radical expressions, or

otherwise. It is not considered that a finite quantity is

any addition to an infinite one, or diminution from one,

and such finite quantity may be expunged.
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178. An infinite quantity is an impossible quantity ;

hence all conclusions predicated on the possibility of an

infinite quantity must fail
;
with the exception, however,

that certain conclusions are practicable with reference to

the finite terms of a series. But general developments
fail for certain values of a quantity when any term of

a series becomes infinite for such values.

SECTION XXII.

EXCEPTIONAL PRINCIPLE RELATING TO TAYLOR S

THEOREM.

179, The general development of every function of a

variable according to the ascending entire and positive

powers of its increment, for general values of the variable,

is possible by Taylor s Theorem. But this development
does not hold whenever, for a particular value of the vari

able, any of the coefficients of Taylor s series become infi

nite. Thus, the general development ofFx-=. \j (x a),

when x is replaced by x -\- A, is, by this theorem,

F (x + h a) =

(x + a)* + i
(x
- a)~* h -

(x a)
1 h* + etc.,

/ o

where, in case a? a, all the differential coefficients become
infinite. And it will be observed that when any dif. coef.

becomes infinite, all succeeding ones do also.

It is not held that the development fails when these

coefficients become imaginary if the variable takes a par
ticular value

;
because the function of x -\- h would itself

become imaginary at the same value, and it is proper that

one imaginary quantity should be equated with another.
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Since such coefficients as become infinite for the pro

posed value of the variable, become so on the principle of

the denominator of a fraction vanishing, the sign of such

infinite coefficient becomes always ,
or is ambiguous.

Whatever uses, therefore, we may on general principles

wish to make of Taylor s Theorem, become exceptional on

the condition alluded to. Thus, in regard to maxima and

minima, suppose it were

1. Required to find the maxima or minima values of the

function y = b -f- (x )l.

...=!(._),dx 3
v

4

dy
The equation = gives x = a

;
and if we proceedd x

to determine whether we have a maximum or minimum for

x = a, we find that for this value the second dif. coef. is

infinite, which is but another name for an impossible quan

tity. But as we have never any thing to do with the

greatness of a dif. coef, when we examine it with the pur

pose we now have in view, but have to do with its sign

only, this second dif. coef. must, from its mode of deriving
its infinite value, have the ambiguous sign ;

therefore the

function in question must, at x = a, be inferred to have

both a maximum and a minimum, which nevertheless is

still a possibility for some functions, but, with reference to

the one in question, may be found by algebraic or arith

metical tests not to be true, but that there is only a mini

mum. For if we test the value of y immediately before

x = a, as when x = a A, and immediately after x= a,
as when x = a -|- A, that is, by substituting a h for x
in the function, we shall have

F (a h) = 5 + At.

15
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Hence b is increased for either sign of h
; consequently

x ==. a renders the function a minimum when having the

value b.

It will be observed that since the odd root of a negative

quantity is possible, such root being negative, and the even

power of all quantities is positive, the fourth power of the

third root is positive.

180. To obtain the true development of a function for

that one, or those, particular values of the variable which

cause Taylor s Theorem to fail, the usual course is to recur

to the ordinary process of common algebra, after having
substituted a -\- h for x in F x.

2. Required the development of F x = 2 ax a?
2

-|-

V^ 2 2 for the condition when a? becomes a -f- h ;
and

to arrange the terms according to the increasing exponents
of A.

Substituting a -f- h for x we have

F (a + A) = a* h* + ah* (2 a

developing the binomial (2 a + A) * by the Binomial The

orem, and multiplying its terms by a AS, we have

8(2a)

+ etc.

The algebraic process in question is any that will reduce

complex terms to simple ones, in which h shall appear as

a factor writh any whole or fractional index, unless, per

haps, it may as above be eliminated from any term or

terms. It will be observed that these various coefficients

of A are not differential coefficients.

3. Required to determine whether y in the following

F
(cc, y) =. has a maximum or minimum, viz. :



FAILURE OF TAYLOR S THEOREM. 171

d_y__
d x

~
3 (y 6)

*
3 (x a]

In this instance we might, on inspecting its first form,

dy
incautiously infer that becomes when x

,
if we

d x

regard only the numerator (Art. 112). But we are obliged
to inquire whether we have not here a vanishing fraction,

the denominator becoming when x =. a, which we should

find to be true, and that its value is infinite when x= a
;

which we see at once on inspecting the second form. And
we find that x is infinite, by the rule of vanishing fractions,

when the first dif. coef. = 0, and therefore (Art. 108) we
should have no maximum or minimum. If, nevertheless,

we consider the infinite value of the first dif. coef., we find

it occurs when x = a, and at this value Taylor s Theorem

fails. Yet if we test this value, x a, in the function, or

rather the values of a;, within h of a, we shall find a mini

mum. Substituting a h for x we have for y

and b is increased for either sign of A, since all possible

values ofy are b and something additional to #; hence a

minimum. Hence an important principle supplementary
to our Section on Maxima and Minima, which is :

181. Before we can conclude in any case that the val-

d y
ues of x deduced from the condition =0 comprise

among them all those that can render a function a maximum

or minimum,we must examine those values ofx arising from

the condition c/&amp;gt; . And as this is a case wThere the
d x

development by Taylor s Theorem fails, we must make this
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examination by the algebraic method of substituting each

of these values, as affected by the addition and subtraction

of A, for x, in the proposed function, and observing which

of the results agree with the conditions of maxima and

minima, as by definition.

182. The method pointed out in a previous section for

determining the value of a vanishing fraction now requires

the mention, that in case a numerator or denominator fails

to be developable by Taylor s Theorem, we must adopt the

algebraic method of development, for either or both which

so fail. We should then arrange the terms as numerator

and denominator according to the increasing exponents of

h
;
then divide each term in either by h at the lowest

power of either
;
then test what the fraction becomes for

h = 0. Whatever value it has is the value desired.

4. Required the value of- when x = a.

(2 a A){j +- (2 a A)4A + ,
etc.

hi hi

2=(2), An,

5. Required in y = x + (x a)
2 V x for x a.

d x

6. Required
- - in y = x -\- (x a)

2 V# for x = a.

Ans. 2 Va^

7. Required and - - in (y x)
2

(x a)
4 x for

d x d # 2
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It is worthy of notice whether the last implicit function

is not virtually the preceding explicit one when we re

gard y.

8. Required in y
3 = (x a)

3
(x b) for x a.

d x

Ans. (a b) 3 .

We here terminate the portion of our treatise relating

strictly to Algebraic Functions.

SECTION XXIII.

NATURE OF LOGARITHMS AND EXPONENTIAL QUAN

TITIES.

183, Thus far we have made no mention of any func

tions in connection with which the variable occurs as an

exponent, whether of a power, as in a x
,
or of a root, as in

5^, or of a power and a root which is the characteristic of

a fraction in general as exponent. The reason of this has

been a regard to a distinctive division of subjects. The
discussion of the properties and differentiation of strictly

algebraic functions being completed, we shall be brought
to consider, in the succeeding section, functions of a new
order. But we are not to forget that the subjects strictly

relate to numerical analysis, and are directly consecutive

with our preceding inquiries. It is, however, called trans

cendental analysis, as indicative of being of a grade above

what is commonly called algebraic.

Since many treatises of algebra, otherwise quite com

plete, do not contain an account of the theory and uses of

15*
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logarithms, and it would be unfortunate for us to go for

ward without such preparation, we will devote this section

to the Nature of Logarithms and Exponential Quantities.

184. A logarithm is such exponent as, applied to any
number a greater than 1, shall cause a number to be de

noted equal to any positive numerical quantity b what

ever, greater or less than 1. The logarithm in question
is the logarithm of #, the latter number.

185. A system of logarithms is a collection of exponents
such as offer by selection, one which, when applied to

some constant number (originally arbitrary), called the

base, will render this base the equal and the representative

of any number whatsoever; and hence every number

whatsoever. This exponent is the logarithm of the latter

number.

186. In accommodation to the decimal system of num

bers, the number 10 has been selected as the base of the

common system. Accordingly, in this system 1 is the loga

rithm of 10, because 10 * = 10
;
2 is the logarithm of 100,

because 10 2 = 100; 3 of 1000, because 10 3 = 1000, etc.

Zero or is the logarithm of 1, because 10 1. As it is

seemingly arbitrary to call the common logarithm of 1,

we remark that it is strictly inferred from the ratio by
which logarithms diminish with entire units. We have

for logarithms, by continuity, the following, placed in con

nection with the numbers of which they are the loga

rithms :

3 2 1 01-2 -3, etc.

1000 100 10 1 df yfo TTyW&amp;gt; etc.

or, ,1 ,01 ,001 ,
etc.

whence it appears that while all the natural numbers.
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when selected for their logarithms in entire numbers, vary

successively by the ratio 10 or T\y, their logarithms vary

by a uniform difference of 1. And it appears that we pass
zero with the preservation of this law.

It already appears that the logarithm of a fraction, by
which we mean a numerical quantity less than 1, is nega
tive. If we represent the logarithm of by n, we
have

io-= o = i.,

which requires that the denominator 10 w be infinite, or

what is the same, n to be infinite.

It further appears that the common logarithm of any
number greater than 1 and less than 10 must be between

and 1, i. e., be a fraction, or rather we should find it not

to be expressible exactly even as a fraction. The same

remark applies to any logarithm which is not a whole num
ber, positive or negative ;

that is, the logarithm of any
number intervening between 1000 and 100

;
100 and 10

;

10 and 1
;

1 and ,1 ; ,1 and ,01 ; ,01 and ,001 ; etc., is ex

pressed by a whole number, or 0, and a fraction, most con

veniently a decimal fraction. Such decimal fraction not

absolutely expressing the value intended, is what is known
as an irrational quantity. Thus, the common logarithm of

2 is 0,3010299, that of 543 is 2,7352793, etc. In view of

this mcommensurableness of most numbers and their re

spective logarithms, only an approximate definition can be

given of a logarithm in general. The definition should

embrace a reference to a certain power of a certain root of

the understood base, by successive degrees of proposed

approximation, each replacing the preceding. Thus the

common logarithm of 2 is, by the degree of nearness de

sired,

3 301 30102 301029

10
or

woo
or

io^o
or

1000000
etc- ;
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which are to be read, 10th root of the 3d power of the

base, or the 1000th root of the 301st power, etc. In this

way must we enunciate the significance of a decimal frac

tion as an exponent. In proper mathematical expression,

as we shall see, logarithms, when not entire numbers, are

discoverable as existing in an infinite series, which indeed

a decimal fraction not terminating, itself is.

The method of using logarithms for the purpose of fa

cilitating operations with numbers is quite evident after

the study of algebraic exponential quantities.

187. In order to multiply quantities, we add their loga
rithms

;
the sum of their logarithms is the logarithm of the

product, or continued product, of two or more quantities.

Hence any number is multiplied by 10 by adding 1, the

common logarithm of 10, to that of the number; this

logarithm, thus increased, becomes the logarithm of the

product. It is multiplied by 100 by adding 2, by 1000

by adding 3 to its logarithm. Advantage is taken of this

property in the preparation of tables to insert only the

fractional part of a logarithm, leaving the integral part, or

characteristic, to be extemporized according to (being one

less than) the number of places of the integralpan of the

number of which the logarithm is desired. Thus, the

logarithm of

54360
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tic in such cases, since the inconvenience of the negative
characteristic is thus avoided, and no error would be likely

to arise in common uses which would not be strikingly

obvious, and easily corrected by subtracting the 10. Thus
the logarithm of ,5436 is expressed as 9,7352794.

188. Division of numbers, being the converse of multi

plication, is effected by the subtraction of the logarithm of

one number from that of the other
;
this difference, when

positive, is the logarithm of the number of times the less is

contained in a greater number ;
when negative, it is the

logarithm of the fractional time the greater is contained in

the less. We have already found that the logarithm of

a fraction is negative.

189. In order to raise a numerical quantity to any

power, we multiply the logarithm of that quantity by the

number denoting the power required ; the product is the

logarithm of the power required.

190. In order to extract any root of a numerical quan

tity, we divide its logarithm by the cardinal number ex

pressing the root required in the ordinal form of expres

sion, as 2 for second, etc.

The method
t
of finding, by the use of logarithms, the

fourth term of a set of common direct proportionals, is

therefore extremely obvious
;
we add the logarithms of the

first and second terms ; from the sum subtract that of the

third
;
the remainder is the logarithm of the fourth, or

term required.

A small volume is to be obtained containing a table of

common logarithms, for all numbers from to 10000, to six

places of decimals, sometimes to seven places. The meth

od of taking out the logarithm for any number within these

limits, and of extending the use of the table to much

greater numbers, as well as of finding the natural number
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corresponding to any possessed logarithm is usually

printed with the table. The table is also to be found

in treatises of navigation and surveying.

The logarithm of a negative quantity does not belong
to the same system with those of positive quantities.

When, however, certain numerical operations with nega
tive quantities are to be done, we may eliminate the con

dition of their negativeness until the result is reached,

when the appropriate sign may be prefixed to it, as alge

braically determined.

SECTION XXIV.

DIFFERENTIATION AND DEVELOPMENT OF LOGA
RITHMIC AND EXPONENTIAL FUNCTIONS.

191. A logarithmic function is the logarithm of a vari

able quantity ; as, log. ic, or log. (b -\- x
n
),
which do not de

note the logarithm which is c, etc., but the logarithm of the

number which is #, etc.

192, An exponential function is one in which the vari

able, or some function of it, holds the position of index or

exponent; as,
x
,
or b nx

,
the root being a constant.

It is important to observe that such index, when con

sidered as some logarithm, is not the logarithm of the

same quantity to which it is attached as index, but of the

entire power which itself is employed in expressing.
A number or numerical quantity, and its logarithm, are

distinguished as natural number, or quantity, and its log
arithm.
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193, We now proceed to differentiate

y = log. x,

for any system of logarithms having for its base a, which

convenience will require to be considered greater than 1
;

for we immediately derive, by the converse of the defini

tion of a logarithm,

=-, (i.)

and by no variation of y while positive can a v
represent all

numerical quantities, unless a be greater than 1.

Letting y take the increment h as the independent

variable, and x denote the corresponding value of #, we
have

Let us now substitute
&quot;L-\-b

for a, and develop

by the binominal theorem, and we have

. V
h h-l A-2_ 3 .

7
* + eto-

The multiplication of A (A 1) (A 2), etc., being done,

and all the quantities selected from the successive terms

of the continued series, which are factor to A, and placed
or indicated within the following parenthesis, and sA 2

being used for all succeeding terms, in which s alone

includes, in some sense, A, or a series involving A, we
have

s A 2
;
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multiplying both members by a, and calling the terms
within the parenthesis c, we have

Subtracting the equals x=
a&quot;,

from the above equals,
we have

-\-sa
v h~

x x

which becomes, when A= 0,

(2.)

dy

Now, a y
being= x by (1), we have

dx

^ ==CC;

dx c x

and dy= X
c a;

where b being = a 1, we have

1 1

ca-l-^(a-l)2+ J(a-l)3-i(a-l)4+
e1

Defining now, or the reciprocal of c, as the modulus

of the system of logarithms which has the number a for

its base, we have the general rule :

194. To differentiate a logarithmic function, or the

logarithm of a variable quantity, we must multiply the

modulus of the system by the differential of the natural

quantity ,
and divide, the product by the natural quantity

itself.
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195. Since a logarithmic function may be of a more

complex form than simply log. jc, some function of a; being
in the place of #, we must evidently have in the result, in

the place of dx, the whole differential of such function, in

which, indeed, dx will be found as a factor.

196. If the variable quantity of which the logarithm is

intended in the constitution of a logarithmic function,

contain a constant factor, since such factor will be found,

in pursuance of the rule for differentiation, as still a factor

of the numerator and of the denominator, it becomes

evident that such factor contributes nothing affecting the

differential. This is consistent with a previous change of

the function into the sum of the logarithms of the factors ;

thus :

d [log. b (a x) ]
= d [log. b + log. (a x) ]

=

197. But if the logarithmic function be associated with

a factor in a manner oy which the logarithm of such

product is not intended, the constant factor will be found

affecting the differential as factor
; thus,

d [m log. x] m d log. x=--.

X C

198. Selecting from the demonstration of the differen

tiation of logarithmic functions, equation (1), viz.,

we observe a v to be an exponential function, and that its

differential coefficient is expressed in equation (2), y being
the independent variable, and x being dependent. It is

dx= ca v

dy

/. dx=:ca v
dy.

16
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199, Therefore, to differentiate an exponentialfunction,
we must multiply together the reciprocal of the modulus

of the system of logarithms, determined by the base of the

exponential, the exponential itself, and the differential of
the variable exponent.

200. An exponential function is not considered to be

restricted to the very simple form of a y
,
or indeed to be

restricted at all, for b ay
,
a y+ b na

,
-

v
-I- b v

, etc., are
(avc)

held to be examples ;
the base must be, however, the root

of the power indicated, and in b a y
,
b is no part of the

base, nor even a factor of it, but is a factor of the power

only.

If in the preceding demonstration we had at the outset,

we should find the factor, b, passing through the demon

stration, and appearing in the result,

dx= c b a v dy;

in the sequel we shall have a practical use for this obser

vation.

201. For the hyperbolic or Napierian system of log

arithms, the modulus has been assumed 1, which value

renders its reciprocal = 1. As to this system, therefore,

the mention of the modulus may be eliminated from the

two preceding italicized rules
;

if in the succeeding context

all mention of a modulus is omitted in any operation, the

hyperbolic system will be understood to be intended.

202. For c 1, the value of a, as the base of the hyper
bolic system, must be deduced. We will therefore de-
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velop, by Maclaurin s Theorem, the exponential function

a v
according to the powers of y.

Let x = a v
.-. when y = 0, x 1

;

dx- = c a y .: when y =. 0, x= c :

dy

dy 3

etc. etc.

When, therefore, c= 1 and y 1, we have

a^l + l-fl-l-
1

-^--.--
1_,

etc.r
2 2 .3 2.3.4^

=: 2^71828,

which is the base of the hyperbolic system.
But if we wish to assume a 10, which is very desira

ble for, and is the base of the common system, since a

1 =z 9, we have for c

= 2, 30258509
;

and - ,43429448, which is the modulus of the common
c

system.

20.3. For the common system of logarithms, therefore,

the fraction ,43429448, must be read as modulus in the
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foregoing rules for the differentiation of logarithmic func

tions, (Art. 194) ;
and the number, 2,30258509 as the recip

rocal of the modulus in the rule for the differentiation of

exponential functions (Ait. 199.).

To recapitulate : we have for

(
Modulus of hyp. system, assumed, . . . 1,

} Base of the hyp. system deduced, . . .2,71828

( Reciprocal of this modulus, 1,

SBase
of the com. system assumed, . . 10,

Modulus of com. system deduced, . . . ,43429448

( Reciprocal of this modulus, 2,30258509

Since from equation (3) foregoing, which is

we derive

dy 1

~dx 7

which becomes, when x = 1,

dx~ c&amp;gt;

we have for the dif. coef. of the logarithm of 1 in every

system, the modulus of such system. The modulus of a

system is therefore the ratio, or rate, at which positive

logarithms come into being. And this ratio is constant

for whatever number x may be. Accordingly, whatever

the number may be, the ratio of its logarithms, by different

systems, is always constant. Hence, we may find the

hyperbolic logarithm of any number from its common log

arithm, by multiplying the latter by 2,30258509. And,

conversely, a hyperbolic logarithm may be converted into

a common logarithm by dividing it by 2,30258509.
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In regard to negative logarithms, or those of fractions,

or any numerical quantities less than 1, the pursuance of

this multiplication renders the hyperbolic the less loga

rithm than the common, the greater negative being, of

course, the less quantity.

For the most concise method of indicating whether the

hyperbolic or common logarithm is intended, authors

agree to cite the hyperbolic, by the small Roman letter 1.,

or log., the common, by the Roman capital L., or Log.
We shall adopt this distinction hereafter, when distinction

is necessary.

Mr. J. R. Young suggests that (log.)
2 x shall be taken

to signify log. log. a?, or logarithm of the logarithm of cc,

but log.
2

#, having no parenthesis, to signify the second

power of log. x. Sufficiently explicit is log. cc
2 for the

logarithm of x 2
. We will adopt this use.

When is a quantity less than one, log. is negative

without the expression by a negative sign ;
hence f log. J

becomes a positive quantity ;
hence log. ( log. j

is the

logarithm of a positive quantity, and becomes entitled to

the abridgment, (log.)
2

. The succeeding context

presents a case of this use.

16*
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SECTION XXV.

EXAMPLES OF DIFFERENTIATION AND DEVELOPMENT
OF LOGARITHMIC FUNCTIONS.

1. Required to develop log. (a -\- x) by Maclaurin s

Theorem, according to the ascending powers of x.

Let y = log. (a+ x) .-. (y) = log. a,

dy l

dx a + x \dx

d z y 1

dx 2

d x 3
(a -+- x) \dx 3/ a 3

d*y 2 . 3

dx*~ (a + x)
4

. X X 2 X 3 X*
.: log. (a 4- x ) = log. a -\ h , etc.

a 2 2^3a 3 4a^

2. From the above development, required to deter

mine the Log. of the number 11.

log. (10+ 1) = log. 10 + - l
- h +&amp;gt;

etc.
~10 2.10 2

&quot;^3.10
3 4.10-1

log. 11 = 2,30258 + I + - -
-L, etc.

1

10 200 3000 40000

= 2,39788

.-.,2,39788 -^ 2,30258 = 1,04139. Ans.

The algebraic addition of six terms only of the above

series for log. 11, is sufficient for determining the hyp. log.
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correctly to five places of decimals. This result, divided

by the reciprocal of the modulus of the common system,

gives the common logarithm of 11.

If a be quite large, as 4000, or 5000, the addition of only

two terms, viz., log. 5000 and --- the dif. coef. of log.

(5000 -f- 1)&amp;gt; gives log. 5001, accurately to five places of

decimals.

We can never call the &quot; differences
&quot; between the log

arithm of one number, and that of a number greater by 1,

the differential of the logarithm of that number ;
the dif

ferential of a logarithmic function is 0, and not 1.

3. Required the development of y= log. (1 + ) for

B= l.

Ans. y= log. 2 = 1 -+ - -+--+, etc.
2 ~3 4 5 6

The summation of this series would serve to give the

hyp. log. of 2, were it not of such slow convergency as to

render a correct sum for six places exceedingly laborious.

4. Required Log. 2 from the development ofy = log.

, which, when x= -, becomes evidently log. 2.
1 x 3

.-. (y) = log. 1 = 0;

* 2 * *

dx (1 z2
)
2

*

1 x&quot; \dx 1

,

(I-* 2
)
2 \dx*

S3
== 4 etc ;
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We have, then, if x= -
,

3

2x = 0,66666666

\x* = 2469134
o

|aj5
164614

?j-xi
= 13064

^x* = 1128

- = 102

.-. log. 2 = ,69314708

Now ,69314708 -7- 2,30258 zn ,30103 /. ,30103 is Log. 2.

Having obtained Log. 11 = 1,04139, and Log. 2 =
,30103, we find

1,04139 + ,30103 L. 22 1,34242

1,34242 +1 = L. 220 2,34242

1,04139 ,30103 = L. 5^ = 0,74036

1,04139 X 2:r=L.ll 2 :=L. 121 2,08278

OJ4036 +1 = L. 55 = 1,74036

1,74036 X 2 = L. 552 = L. 2925 = 3,48072, etc.

When we have obtained the logarithms of the prime

numbers, we easily, as above, obtain the logarithms of all

other numbers.

5. Required to differentiate y x log. a?,
= log. x

x
.

dx
Ans. dy= dx\og. x-{-x X = dx\Qg.x-\-dx.

X

6. Required to differentiate y= log. x 2 = 2 log. x.

2dx
Ans. dy= .

X
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7. Required to differentiate y= log. x -\- log. (a -f- x) =
log. [a X ( + a) ]

= log. (a a + a 2
).

(a + 2*) da;
Ans. a v=

8. Required to differentiate y= log.
2

jc.

2 log. a; X dx._, . .

Making log. x ==. z, dy =2 2 z dz= 2 log. ic &amp;lt;#g=

9. From log. y = C, to find c?y.

Ans. = dx .\ dy= ydx.

10. From a = log. c y
, to find dy.

a ad log. a; a dx
, , .1/=- /. dv=-- ,=--

log. x log.
2 x x log.

2
a;

11. Required to differentiate y = (log.)
2

a;, by which
is intended log. log. a?.

Putting z for log. JB, c? y = , but d z =. d log. x

dx
.-. dy = ---

.

x log. *

12. Required the value of the following vanishing frac

tion, when 05= 1, or, which is the same, the value of the

difference of the two functions of a?, each of which be

comes co when x = 1, viz. :

x log. x (x 1) x 1

(x 1) log. x x 1 log. x

l_

p1
log. x -f- 1 1

p&quot;

Art. 171. -
-\ nr, ~ \ i ^^

- +
X X
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13. Required the value of
B X * S X

when x = 1.
(log.*)

2

Ans. 1.

204. The differentiation of an algebraic function, which

is resolvable into factors, may be much facilitated by first

taking its logarithm, and then differentiating, it being ob

served that the differential of a logarithmic function may
not contain a logarithm, but be purely algebraic. If the

function is not algebraic, and is not resolvable into factors,

this method may be used, but without advantage.

14. Required of y= (a+ a;
2
)
3 V-

(I X

We have log. y= 3 log. (a -\- x
2
) + log. x

dy Sxdx dx= = --
(1.)

y a + x 2 2*

after substituting the value of y for y in equation (1.)

dy
15. Required-- of y x (a

2 + a;
2
) V 2 a 2

,
d x

/. log. y= log. x+ log. (a
2
-f- a

2
) + -

log. (a
2

dy d x
,

Ixdx xd x

dy
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205. Since the logarithm of a quantity or function

becomes greater as the quantity becomes greater, and less

as the quantity becomes less, the maximum of the quantity
occurs at the same value of the variable, as the maximum
of its logarithm occurs. We may avail ourselves of this

principle.

Problem 33, on page 88, rendered in more general

terms, becomes :

16. Required to divide the number a into two such

parts that the mih power of one part multiplied by the

nth power of the other, shall be a maximum.
Let x = one of the parts, and y =. the product in ques

tion
; then,

let u = log. y m log. x -\- n log. (a a;),

mdx ndx dy
then du d log. t/= =

x ax y

du d log. y my ny dy
d x d x x a x y d x

Whence, if = 0, or *- = 0, we have x= -^-.
d x y d x m-{-n

We find that we thus eliminate all necessity of substituting

the value of y in
,
or .

d x y d x

We will now prove that we need not substitute the

value of y in the second or any succeeding differentiation

d i{

of
,
so far as determining maxima is concerned.
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,,r , ydu dyWe have - =
,

d x d x

d x (dy du +y d* u) d 9
y

dx* ~~d**

d u

therefore, when = 0,
d x

In such use y being the quantity of which the logarithm
d z u

is taken, must be positive ;
hence the sign of- will

agree with the sign of - in general, y being a common

divisor in all dif. coefs. of w, or a common factor in all dif.

coefs. of y.

In the particular case, u and y are maxima in necessary

concurrence.

306. It is required to develop y = log. (x -\- h) by

Taylor s Theorem, according to the powers of A, the ex

pression log. being general, being the modulus.

d*y _
d

d 3
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SECTION XXVI.

EXAMPLES OF THE DIFFERENTIATION AND ANALYSIS
OF EXPONENTIAL FUNCTIONS; INCLUDING EXAM
PLES FROM COMPOUND INTEREST, AND INCREASE
OF POPULATION.

1. From a = b x to find &, where a and b are any num
bers, or numerical quantities :

log. a L. a

log. a = x log. b .-. x = - - = .

log. L. o

2. From a^= * to find .

d x

d y log. b

y log. a= x log. b.: = .

d x log. a

3. From a = bmx to find x.

log. a

log. a = m x log. 5 .-. x= -
.w log. 6

4. From a =3 # * to find x.

log. a
log. a= x log. b .: x

log. 6

From this result we may infer that either a or b must be

less than 1, or a; must be held to be of a value opposite to

that expressed by the sign in the function (Art. 97).

5. From a bx to find log. x.

log. a= x log. J /. log. x = log.
2 a log.

2 5.

17
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6. From a = - to find x.

P
m -

log. a = x log. b ra x log. JP,

log. a

log. b m log.p

7. From y= fL. to find ,

6
X d x

log. y = sc log. a a log. &amp;gt;,

df log. y := =
(log. a log. b) dx,

. . = -^ (log- a log b).

8. From y = a x
log. x to find .

Let z ==. log. tc, then log. y = x log. a -f~ 1&amp;lt;

.-. d log. y= d x log. a -| ;

now
2 log.

;= (log.a+^a log.*.

9. From a = 5 log- x to find x.

log. a = log. x log. #,

log. a L. a
1 8- !B=sp-=r ;

jc is therefore the natural number of which this quotient,

- is the logarithm.
L. 6
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10. From y a x b nx to find .

d x

log. y = x log. a -f- n x log. b,

d log. y = =
log. aX dx + n log. 6 X

.-. = a* bnx (log. a + 7i log. 5).

11. From a a;= &*&quot; to find .

d y 1 log. a + log. x- - --

d x x 2
log. 6

12. From y= x x to find.
rf X

rf y = log. x d x -f- d x,

dy

= !E (log. fl!+ l).

13. Required the value of - when x = 0.

(Art. 171.) p = log. a . a x
log. b . b x.

? =!,

.*. = log. a log. b= log. , Ans.
qt b

x a

14. Required the value of when x = a.
log. a -log. a;

Ans. (1 log. a) a
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207. The successive terms of a series called progression

by quotient, but as truthfully progression by factor, differ

in their expression by a varying index only.

If a be the first term of such series, and q the factor,

which, by association with a produces the second, q*, &amp;lt;?

3
,

etc., the factors which produce the succeeding terms, we

have, after putting q = 1 with a for the first term,

aq, aq, aq\ aq*, aq 4
, etc.,

as an instance of the successive terms of such series. This

may be called the general form. Any one of these terms

is determined by a the first term, q the common ratio and

n its index.

The compound interest of a sum of money for a term of

time, the interest being supposed to be added to the prin

cipal at the end of each year, is represented by a term in

such a series
;
and all its terms are the amounts as they

are constituted at the end of each year.

For the better understanding of this, let us resolve q

into 1 + ,
where 1 represents 1 dollar put at compound

interest, and r the rate per cent.
; consequently repre

sents its interest for one year in the proper fraction of a

dollar, and 1 -f- constitutes the amount of the principal

1 dollar and its interest at the end of the first year. The

quantity, a, is any sum of dollars, and is constant through

all the terms
;
for all dollars at compound interest sever

ally are like the 1 dollar mentioned as principal. The

amount of the 1 dollar for the second year is evidently
r \ 2 / ~ \ 3

-)
\

,
for the third, etc., f 1

-| j , etc., and for any

sum a, the preceding expressions become a (l -{- J ,

a(l4-
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In the succeeding context, we will use the small Roman
r instead of the small italic r

; as,

r

~
100

but must return to the Italic r when we mention rate

per cent., for then, in a distinct sense we make an integer
of each unit of r.

We have, then, for successive amounts of the compound
interest on any sum of dollars, a, at the end of succes

sive years,

the sum put at interest, however, for the first year is enti

tled to the expression

so that, as a series which may ever need to be summed, the

term having the index n, is the (n -f- 1) st term.

If we call A the amount of principal and interest of a sum
at compound interest for n years, which amount is nothing
more than just that term of the series of which n is the

index, we have the formulas :

.4=a(l+r), (I.)

L.A-L.a

(4.)

(5.)
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where iS represents the sum of n terms of the series, a q ,

&amp;lt;?, a&amp;lt;?

2
,
etc.

;
for the demonstration of formula (5.), we

must refer to a complete treatise of algebra, since it is not

like (2.), (3.), and (4.) deduced from (1.)

We are furnished now with the means of resolving

questions which make n to be #, or a variable, and any
of the other quantities to be y.

15. If 342 (a) dollars be put at compound interest at

5
, (r) per cent., required how the amount (A) is increasing,

compared with the years, at the end of 3
J- years.

From y = a (1 + r)
*

/.=alog.(l+r) (1+r)
3*

= 342 Log. (
m\ /^ X 2,30258= 20, Ans.

dx \m) \iooj

Hence it is increasing 20 times as fast as the years.

16. The sum of 1200 (a) dollars was put at compound
interest till the amount (A) accrued to be 2525,82 dollars.

If we first assume the number of years to have been 11,

and immediately proceed to consider them more, how is

the implied rate per cent, disposed to change, in accord

ance with the assumed variation of time ?

On examining, in formula (4.), ^,
we observe that we

have to do only with the value of this fraction, which, in

the present problem, is 2,1048. We must remember the

denominator of ris 100.

.-.r=100 X (2.1048) ir 100,

or, y = 100 X (2.1048) r 100.
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.-. ^= 100 X 2.30258 X L. 2.1048 X (2.1048)
F X

( j,)

230,258 X 0.32322 X 1,07- _ ---. _ -

56583, Ans.

Here we are obliged to remember the differential of the

variable exponent.
Hence the rate per cent., which happens to be 7, is dis

posed to diminish 6583 ten thousandths of one per cent.

The factor, 2.30258, will be remembered as the reciprocal

of the modulus.

17. On the 1st day of January, 1864, the amount of

principal and interest of a sum of money having been

at compound interest, at 7 (r) per cent., was found to be

3579 (a) dollars; required to find the number of years
distant before or after that date, when the compound
interest of the sum, whatever it may have been, that was

originally put at compound interest, should be found in

creasing 60 times as fast as the years.

With reference to the date given, the amount 3579 dol

lars, is not the A for the proposed investigation, but is a, the

sum considered to be put at interest with reference to both

future, and, as it were, past time. If n in the formula

should be negative, then A as less than a, may be calcu

lated for any past time. Now the question does not ask for

the value of this A, but for its rate of change, which was

just the variation of the interest only. Therefore, calling

this A
y
or the interest either, y, we have

a (1 + r)* = 3579 ~
i

... H=60 = 3579 X 1UW268 X L. O .

_ L. 60 L. 3579 L. (L. 107 L. 100) L. 2.30258

L. 107 L. 100
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Now, L. 107 = 2.02938 ;
L. 100 = 2 .-. L. 107 L. 100=

.02938, .-. L. (L. 107 L. 100) = L. .02938;

L. 60 = -f 1, + 77815

L. 3579 = 3, 55376

L. .02938 = + 2, 46805

L. 2.30258 = 0, 36222

__
4,
_ 38403

_|_ 3, _|_ 77815

60578

Now, ,60578 -^ ,02938 20,62 = (20 years, 7

months, 13 days) ;
and the date desired is May 18th,

1843, Ans.

18. (a.) If a body be put in motion through a resisting

medium, by a force which impels it 10 rods in the first

second of time, 9 rods in the next second, and so on, so

that in any second of time the distance impelled shall be

Y^ths of the distance in the preceding second, required
how far it will go in all time.

With reference to formula (5.), /8 is the distance re

quired, a is 10 rods, and q is -^ ;
now q being less than 1,

its infinite power is 0. So that

8 10 -. TV = 100 rods, Ans.

This determines a limit for
;
for the function ^-

-,
q l

can have no mathematical maximum, as by definition.

(b.) Required how fast the body is moving at the end

of 16 seconds
;

i. e., its constant rate, as it were, for an

infinitesimal space of time, but mentioned in the language
of rateper second.
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Since S, the whole distance attained at the end of 16

seconds, will be varying just as the velocity, we will

substitute y as velocity for S, for the purpose of differen

tiation, 16 or the number of seconds being x
; then,

_ioo(^ 100

10

= - 100 X 2,30258 X L.
( ) (i

= 230,258 X ,04576 X ,1853

= 1,9526 rods, Ans.

(c.) Required the actual distance moved through in the

17th second.

19. (a.) A man s property, on January 1, 1850, consisted

of an investment of 1500 (a) dollars in stocks, paying an

annual interest of 7 (r) per cent., but which is to remain in

vested. The remainder of his property was unemployed,
with reference to producing any income, but was salable at

the date mentioned for 2700 (#/) dollars, and was destined

to depreciate at the rate of 4 (r ) per cent, annually, as

indeed it had been previously. Required the date of the

least value of the general balance of his property.

Let y = the sum required, = A -f- A ^
and x = the

number of years difference of date. Then by the formula,

y = a (1 + r)* + (! r )
x

/. when y is a minimum, for we know from logical consid

erations that y has only a minimum, we have :
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/ 1+r x *_ o log. (1rQ
\1 r /

&quot;

Tlog. (1 + r)

a L.(l r )

aL. (1 + r)

__L.a (Log.) (l-r )-L. a-(Log.)2 (1 + r)
^

L.(l + r ) L. (1-rO

where -
(Log.)

2
(1 r

)
= L.

(
L. (1 r

) ;

and is therefore a positive quantity, L. (1 r ) being neg

ative, and L. (1 r
) being positive, and in real arith

metical expression, being without the sign.

The advantage of electing to place the negative sign

before L. (1 r
),

in preference to any other factor, is

manifest.

(#.) Required the date at which the two species of

property become of equal values
;
and also that value.

20. (a.) A certain country consists of two districts, East

ern and Western. On a certain date the Eastern contained

6,272,000 inhabitants, who were, and had been increasing
at the rate of 16 per cent, in 10 years. The Western con

tained at the same date 9,035,000 inhabitants, who were

and had been decreasing at the rate of 5 per cent, in 8

years. Required the different date before or after, of the

minimum population of the country.

(b.) Required the date of like population of the dis

tricts.

(c.) Required the date at which the Eastern district

must contain nine times as many inhabitants as the

Western.

21. Required the number by which, if we divide a and

raise the quotient to the power indicated by that divisor,

the power shall be a maximum.
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Let y = the power ;

then y =

. log. y & log. = x log. a x log. ,

rfy = y log. a y y log. a,

ot &amp;lt;f y
.. log. =. 1 when =0,

x d x

.-. L. - = .43429,

.-. L. x L. a .43429,

L. ic = L. a L. 2.71828,

a
~~

2.71828

208. In the common arithmetical computation of com

pound interest for cases when there are months and days,

additional to entire years as the time, the usual direction

is to find first the amount of principal and interest for the

entire years, on which, as principal, to compute the interest

for such additional months and days. But this course

will always give the entire compound interest somewhat
too great, because it assumes that the interest is to accu

mulate uniformly during such months and days by a rate

that is directly proportional to the result that would accrue

for an additional year.

When a sum is put at simple interest for one year at a

given rate per cent., the virtual amount of principal and

interest is greater, relatively to the time, during the later

or last months, than during the first and earlier months,
for the reason that the unpaid interest of the early month
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is itself on interest during the later month. The idea of

calling the use of money worth a given per cent, for a

year, is therefore a compromise for ready convenience.

Let us now actually compute the true interest of 100

dollars for the successive months of a year, at six per cent,

per year by reducing n in the formula (1.) p. 197 to months,
which is done by giving to it the numerator 12. Formula

/

4th then becomes, when r is , so far as the constitution
100

of A is concerned, or the amount for one year, but still

remains as r, for the first rnontKs rate.

whence, when n =. 1, we have

r = ,00487 ;
and r = ,487 ;

a decimal fraction, of which the unit would be 1 per cent.
;

or it may be read 48 cents 7 mills, as the interest of 100

dollars for 1 month, at nominal six per cent., and indeed

virtual six per cent, for 1 year by the language of com

promise. If we were to speak of a mathematical per cent.,

then multiplying ,487 by 12, we arrive at 5T
8
Q%4g- as the

mathematical per cent, for the rate of interest of money
for the first month, when at &quot; interest at six per cent, the

year.&quot;

Calling n 2, and obtaining another result for r, and

subtracting that obtained, we have for the interest of 100

dollars for the second month, 49 cents. Continuing in this

manner, we find, as the result, the interest for the twelve

successive months to be, in cents, 48.7; 49.0; 49.2; 49.4;

49.6; 49.8; 50.1; 50.3; 50.5; 50.8; 51.1; 51.4, which,

added, make 600 cents, or 6 dollars.
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If n be considered to have values, then, between

integral numbers for years, or to be a quantity having
&quot;

flowing
&quot;

values, we are enabled to derive true computa
tions for compound interest for other lengths of time than

entire years. In this consists the value of that formula,

and of this analysis afforded by the differentiation of expo
nentials.

22. Required the true time in which a sum of money
becomes doubled when put at compound interest, at 5 per

cent., and how much more it is than by the arithmetical

way.
Axis. 14 yrs. 2 mo. 15 da., being 2 da. more.

23. The white population of the United States, from

June 1, 1830, to June 1, 1840, increased 34 per cent.

Required its annual ratio of increase, and in what time it

must have become doubled.

Ans. 2T
9^6

3 per cent. Doubled in 23 yrs. 8 mo. 12 days.

24. Required the true compound interest of 360 dollars

for 5 years, 6 months, and 24 days, and how much less the

true is than the usual arithmetical result.

Ans. $137.80. The difference, 34 cents less.

A true but impracticable definition of compound interest,

ignoring the termination of entire years, as essential, may
be : A sum of money is said to be put at compound inter

est for a period of time, when the value of the use of a

unit of it for a time however short, but definitely stated,

is agreed upon at a rate (or proportion of that unit), and

such rate or interest is added to that unit at the end of such

period, and the use of the sum of them for a similar period
of time is estimated at the same rate; and this second

interest is added to the sum mentioned as the sum for use

during a third similar period of time, and so on to the end

18
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of the last similar period of time, and the formation of a

final sum, called amount of principal and the interest.

SECTION XXVII.

DIFFERENTIATION OF CIRCULAR FUNCTIONS.

[Unlike all the previous sections, the present presup

poses the principles of Analytical Trigonometry to be un

derstood.]

209, A circular independent variable may be an arc of

a circle, or its sine, tangent, or other trigonometric line

referred to the arc.

A circular function is a function of stfme linear trigo

nometric variable
;

it may be the arc itself, when the arc is

not assumed as independent variable
;

it may be a sine,

tangent, etc., of the variable arc.

210, Trigonometrical quantities are all to be considered

numerical linear amounts in their result. Quantities

strictly algebraic, as factors, etc., may contribute to this

result
; as, m in sin. ra ic, n in n tan. x. These quantities,

when they are powers, and when their amounts agree with

certain areas, are nevertheless to be regarded as linear

amounts, or multiplications of a line. Hence trigonomet
rical quantities are special in kind, and not general, like

arithmetical or algebraic quantities.

When an arc is made variable, we may call it the arc x.

If the radius of the circle be 1, or not, its variable arc is of

unlimited length, by repetitions of itself if need be. All

the principles of trigonometry, and of the differentiation of
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circular functions, are intended to apply to this unlimited

arc.

The expressions for circular functions, sin. cc, tan. te, etc.,

are intended to signify the sine, tangent, etc., of the arc

which is, in length, x of the units of which the radius is 1,

unless otherwise expressed. We can hardly call x sin. a

a circular variable function, the variable ar, not being re

stricted to the circle.

It is necessary to make the interpretation of the whole

expression intended as the circular function, however the

variable x may occur in it, contribute to a homogeneous
result. In x sin. a?, for instance, the prefixed x, being a

factor to sin. x, must be abstract numerical, but of the

same numerical value as that of x in sin. ic, so that the result

is a linear amount. In x -\- sin. x it is necessary to inter

pret the isolated -x as the arc to which another linear

amount, sin. ic, is added.

Powers of the sine of the arc a;, cosine of the arc cc, etc.,

are expressed by the exponent attached to the prefix, as,

sin. 2
ce, cosec. n x. This leaves a distinctive signification

for sin. a;
2
, etc., which is obvious, and requires no use of

parentheses.
In the expression, sin. a;, it is scarcely necessary to

remark that the prefix sin. is not mathematically separable
from #, and we will not adopt that inverse notation which

from y = sin.&quot;
1 x would attempt to derive sin. y^=x.

Indeed, we are already committed to regarding sin.&quot;
1 x as

equivalent to
sm. x

In the function x cos - x the exponent must be taken in its

numerical sense, apart from being linear, and the root x

must be the same arc of which the cosine is intended,

raised in its numerical sense to the power cos. x\ the

resulting power may at last be taken as that of the arc.

The expression log. sin. x must be abstract numerical.
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The expression sin. log. x must be linear, and the arc

intended must be of the numerical length, log. a?, radius

being 1,

211. It is evident that the differential of an arc of the

length zero, may be called identical with the differential

of the tangent of it, or chord of it.

We are to understand sin. (sin. x) to signify the sine of

the arc which is of the length sin. 33, which is of course

a less arc than x of the same circle. As with logarithmic

functions we use (log.)
2 x for log. (log. &), so we will use

(sin.)
2 for sin. (sin. x). The second power of sin. x will be

sin. 2 x without the parenthesis.

Such an expression as a siu - x
may be called an exponen

tial circular function.

Circular, Logarithmic, and Exponential Functions, are

called Transcendental Functions.

212. In order to differentiate sin. tc, we have for radius 1,

if a be any arc, and b be any additional arc, by the ratio of

corresponding parts of similar right-angled plane triangles:

sin. (a + b) sin. a : tan. b : : cos. a : 1
;

that is,

sin. (x -\- h) . sin. x : tan. h : : cos. x : 1
;

but if h = 0, sin. (x -f- h} sin. x becomes d sin. cc, and

tan. h becomes d ic, or differential of the arc x.

. . d sin. x : d x : : cos. x : 1

.*. d sin. x =. cos. x d x.

213. If the arc be designated otherwise than by cc, as

for instance by cc
n
,
or x -\- c 3

, etc., then, instead of d a?, we
must substitute the differential of that algebraic or other

function of ic, which does designate the intended arc.
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214. If, moreover, the function to be differentiated be

some function of sin. a*, as sin. 2 ic, an instance of which

will immediately follow, we must differentiate it as any

algebraic power, and make the differential of the root a

factor in the differential required.

215. In order to differentiate cos. x we have

cos. x =n (1 sin. 2 x) *,

/. d cos. x = (d (1 sin. 2 x) *),

= (1 sin. 2
x)
~

* X 2 sin. x cos. x d cc,

sin. x cos. x~
(1 sin. 2

*)*

sin. x cos. &amp;lt;= d: # = sin. x d x.
cos. #

216. In oraer to differentiate tan. x we have

, sin. x cos. x d sin. x sin. x d cos. x
d tan. x = d - - =

COS. COS. 2

cos. z x -{ sin. 2
a:

/. d tan. a = - d x
;

cos. 2
a;

but cos. 2 x + sin. 2 x = 1

.*. d tan. jc = d x = sec. 2 x d x.
cos.*x

217. In order to differentiate cot. x we have

,1 d tan. a;

a cot. x = a =
tan. x tan. 2 x

sec. 2
a;

d x = cosec. * x a x.
tan. 2

a;

18*
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218. In order to differentiate sec. x we have

1 sin. x
a sec. x a = - - d x

cos. x cos. 2 a;

tan. x= d x = tan. a? sec. xa x.

219. In order to differentiate cosec. x we have

d cosec. x d = d x
sin. x sin. a x

cos. x 1=
: X = cot. x cosec. x a x.

sin. x sin. a;

220. Therefore, by recapitulation :

d sin. x = cos. x d x

d cos. a; = sin. x d x

d tan. x = sec. 2 x d x

d cot. x = cosec. 2
aj &amp;lt;# tc

&amp;lt; sec. x = tan. 35 sec. x d x

d cosec. x = cot. x cosec. x d x.

If each of these functions be y, the expressions for their

first dif. coefs. are obvious.

221. Whenever occasion may require the differentiation

of a circular function, for radius R other than 1, it is neces

sary to employ R in the place of 1 in the course of the

method of determining the differential, because, although
1 == I 2

,
this would not be true ofR and R 2

.

1. Required to develop sin. x by Maclaurin s Theorem :

y = sin. x (y) =

()= .

dy
=. COS. CC.

dx



CIRCULAR FUNCTIONS. 211

.=-*..
= cos. x .

= sin. x . . (
-

dx*

= cos. x
(

- 1 = 1, etc.

sin. x =. x 1 -K etc.
1.2.3 1.2.3.4.5 1.2.3.4.5.6.7 ]

2. Required to develop cosine x.

y = cos. x ........ (y) 1

dy . (dy\- = sin. cc....... _
)dx \dxl

/. cos. cc = l --- U etc.
1.2 1.2.3.3 1.2.3.4.5.6

323. If we take the expression for the developed sin.

and differentiate it, we have

,

a sin. cc = a x----- , etc.,
1.2

~
1 .2.3.4

= (1 H-- --, etc.) d x
1.2 r

1 .2.3.4

= cos. x d as, as by development of cos. a?.

323. In like manner if we take the expression for the

developed cos. jc, and differentiate it, we have

x 3 x b

d cos. x =. (x -I------1-, etc..) d xr 1.2.3 1.2.3.4.5 n

= sin. x d x as by development of sin. a;.
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The summation of the series expressive of sin. x and

cos. a;, for particular lengths of the arc a:, must give the nat

ural sine, natural cosine of such arc. The sine and cosine

of one arc being obtained, the sine and cosine ofm times

such arc may be found by the following formulas, of which

we omit the demonstration :

m(m l)(m 2)
sm. m x= m cos.

m ~~ l x sm. x -- -cos. m
&quot; 3

aj
2i O

sin. 3 x -)-, etc.

m (m 1)
cos. m x = cos.

m x-- cos.
m &quot; J x sin. 2 x -f-

2.3.4
cos.

m &quot; 4 x sm. 4 x
,
etc.

224:. In a manner similar to that of sin. x and cos. x,

may tan. a?, cot. tc, etc., be developed. Such are developments
of sin. a;, cos. a;, etc., depending on a portion x of the arc

as assumed variable, useful when the arc is known. But

we may equally develop the arc a?, in terms of some func

tion of it, sin. a?, cos. cc, tan. cc, etc., and in doing so, while

we will preserve the notation as already used, we are obliged

to regard the function y as the independent variable, and

x the arc as the dependent variable
;
whence

-^ ,
in such

case, becomes the reciprocal of those inferred from Art.

219 for 1*,
d x

3. Required to develop x in y= tan. x.

y =. tan. x /. when y = . . (x) =
d x _ 1 1 Sdx\

d y sec. 2 x 1 + y
* \d y/

d*x 2y /d*x\

wJ=
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d*x 2 Sd*x2 Sd*x\=---h * V . . . (- )=
(1+y 2

)
2 \dy*Sdy

= ^
I

&amp;lt;*y

4
(i-t-y

2
)
3

2

23.3
;*&quot;y

where s, /, s&quot; are quantities factors to y,

/. x == tan. x J tan. 3
tc -f- | tan.

5
a;

j-
tan. 7

cc
-{-&amp;gt;

etc.

If now x be an arc of 45, tan. x = 1 = radius,

/. arc 45 = 1 $ + -i
f + , etc.,

which, from its slow convergency, is not readily summed.
Its sum is, in terms of radius = 1, the length of the arc

of 45, or the eighth part of the circumference of the circle.

By the aid of the trigonometrical formula,

tan. a + tan. b

tan. (a + b) = -
,

1 tan. a tan. b

we may obtain Euler s series for the same purpose, which
is much more convergent. For when a + b = 45, tan.

(a -f- b) = 1, therefore

tan. a -J- tan. b = 1 tan. a tan. b.

If now either tan. a or tan. b were given, the other be

comes determinable from this equation. Thus, if we sup

pose

1 1
,

tan. b
tan. a= . then h tan. o= 1 ,

n n n

1 -f- n tan. b = n tan. b .-. tan. b=
n+ 1
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Developing respectively tan. a = - and tan. b= --
, by

n n -\- 1

the method last found for tan. x we havellll
a= -----------h , etc.

n 3n 3 5n* 7 n?

n 1 n 1

1
---- k etc.

n+l 3(n + l)
3 5(n + l)

5 7(n+l) 7

The value of n being arbitrary if we make n 2, for

this value makes the two series converge with* a near

equality, we have, if a sufficient number of terms be

summed,

4 (a + b) = 45 X 4 = 3.141592653589793,

for the ratio of the semi-circumference of a circle to radius,

or of the whole circumference to the diameter.

We have already given the development of the

sine of an arc in terms of the arc. If it be desired to calcu

late numerically the natural sine of an arc designated by

degrees, minutes, and seconds, as for instance for 27 10
0&quot;,

it is necessary to translate this designation by degrees, etc.,

into numerical parts of radius 1. Thus, 27 10 = 1630
,

and 180 = 10800
,
and 1\ f̂f

of 3.1415926 is .47414777

the length of the arc of which the natural sine is re

quired.

If now we select for use .4741 as the arc, and sum merely
three terms of the development, we shall have the usual

tabular amount to five decimal places :

nat. sin. 27 10 = .4741 + -
,
etc.

2.3 2.3.4.5

= .45658
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By logarithms we have

Log. .4741 1 . + 67587

3

Log. .4741 3 1. + 02761

Log. (2.3 = 6) .... . 77815

Log. .01776 - 2 . + 24946

Again,

Log. .4741 1 . + 67587

5

Log. .4751 5 2. + 37935

Log. (2.3.4.5 = 120) .
- 2 . 07918

Log. .0001996 4.+ 30017

Now, .47414

.01776

.45638

+ .0001996

.45658 nat. sine required.

From the natural sine of an arc we easily obtain its

natural cosine, natural tangent, cotangent, secant, and

cosecant.

4. Required to differentiate y sin. (a + m x).

Ans. d y = m cos. (a + m x) d x.

5. Required the dif. coef. of y = sin. x tan. n x.

Ans. = cos. x tan. n x + n sin. x sec. 8 n x.
d x

6. Required dif. coef. ofy sin. 2 x.

Ans. = 2 sin. x cos. x = sin. 2 x.
d x
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7. Required dif. coef. of y = log. sin. x.

dy cos. x
Ans. = =

d x sin. x tan. x

d y
8. From sin. x cot. y, to find .

d x

cos. x d x = cosec. ^
y d y

dy cos. a;

:= cos. x sin.
cosec. 2

y

9. Required the value of when x = 0.
tan.z

Ans. 1.

10. Required value of - - when x = 0.
sin. x 3

Ans. .

11. Required the values of or when sin. a; is a maximum
and minimum.

Ans. x is a maximum at 90, 450, etc., and a minimum
at 270, or 90, 630, or 450, etc.

12. Required the value of ic, when y =. sin. x sin. 2 x

is a maximum.

dy- = cos. x 2 sin. x cos. x = 0,
X

/. 1 2 sin. a = Q

..1 = 2 sin. tc,

/. oj = arc. 30.

13. From y = X COB - X to find ^.

log. y cos. cc log. JK,

&amp;lt;2 y cos. x d x=-- sm. x log. x d x,
y x
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/.
y = g.cof.x-1 cogj x X COB.X

si n&amp;lt; x IQ~ Xi
dx

14. From cot. y = x co - x to find i?.

d y (# sin. a; log. x cos. x) cot. y
Ans. - = -

.

dx x cosec. 2
y

SECTION XXVIII.

GEOMETRICAL ILLUSTRATIONS OF THE VALUES OF

FUNCTIONS, AND THE CORRESPONDING VALUES OF
THEIR VARIABLES; ALSO OF THE VALUES OF DIF

FERENTIAL COEFFICIENTS, MAXIMA AND MINIMA,
ETC.

We have already passed in review the elementary prin

ciples of the differential calculus to a liberal and compre
hensive extent. But we have purposely deferred geomet
rical illustration, because, if we had hitherto suffered it to

engross attention, it might have become an evil so great as

to require decisive counteraction. The illusion is apt to

prevail that the differential calculus relates only to lines,

or forms
;
the geometrical construction has a parallel and

independent nature.

236. Every algebraic quantity or expression not imag

inary, consisting of an aggregate of terms, may, by per

forming the algebraic indications, be considered resolved

into, or constructed as, one resultant numerical amount
;

first as abstract units, inclusive also of fractional expressions

of units, next as units of length, such as may be rep

resented severally as each a straight line, or collectively

19
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as a continuous straight line. Thus, the numerical units,

understood to be intended by the algebraic quantity a,

may be represented by a straight line. But it is equally

true of the product a b, of the quotient
-

, or indeed of

such an aggregate as

a

&quot;j~&quot;T

Vc a 3
, etc.

Methods, however, are pointed out in analytical geometry,

by which the values of Certain expressions may be illus

trated geometrically, and eliminating all considerations

about irrational values, by the methods adopted for the

construction.

Next, let the expression contain, be- Y/ ._,

sides constants, the variable &, that is,

be a function of one variable x, and it

becomes evident that we can deter

mine a straight line of definite length
as its value, by supposing a value for

x. Let the straight line, P P (Fig. 1),

represent one of these values, and let it have the more per

pendicular position for a conventional reason, its universal

adoption by geometers to represent an ordinate of a plane

curve, or of such line as may be determined by ordinates.

This leaves a chance for some different line, I P, conven

tionally adopted as more horizontal to be the record of the

value of x, and they have the point of meeting P in com
mon. The position of the line PP

,
with regard to the

angle it makes with I P, may be any ;
it may be perpen

dicular to I P, but need not be necessarily so. All these

lines and points are to be supposed to be in one plane.

Next, let some other value be assumed for x, and for

simplicity, a value greater by a small amount = P Q, so

that we now have x= I Q, and let the corresponding value
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of Fx be deduced, which may be Q Q ,
and let it be par

allel to P P
,
and the point Q be taken in I P produced

indefinitely toward X. We should adopt the line I X as

dividing positive values ofF x from negative values of it.

Let those values of Fx on the side of I X toward P
, Q

be positive, and negative values of F x will be found on

the other side of I X. Let still a new value I R be as

sumed for cc, and a corresponding value of Fx be found

and be represented by R R . Indeed, let such a number
of values of x be assumed, and the corresponding values of

Fx be found and located, sufficiently near together, as to

give a complete illustration of the nature of these succes

sive values.

In order to accommodate such conditions as grow out

of x at negative values, I being the origin of values, and

positive being conventionally toward the righ% X, we need

the line I X extended indefinitely to X .

Let us also, through I at any angle with I X, draw the

straight line Y Y as an original line of indefinite exten

sion, parallel to which we will suppose we have drawn

PP
, QQ ,

RR
,
etc.

The intersecting lines XX and Y Y ,
called by these

designations as suggestive of the values of x measured on or

parallel with the former, and of the function y, measured

on or parallel with the latter, are the same as the axes of

coordinates in analytical geometry. We may call them

lines of reference, which are to be supposed existing with

reference lo all the constructions of the values of functions

of one independent variable we may wish to make in this

section.

Now, the continuous line which shall join the points P
7

,

Q ,
R

,
and all other necessary points determined in the

same way, is the particular line sought, since every point
in it, when referred to Y Y by a straight line parallel with

XX
,
and to X X by a straight line parallel with Y Y ,
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shows a value of the function and of the variable in cor

respondence. This line may be called the locus of the

values of the variables, or locus of the equation.
The positions of the four conditions alluded to in Art.

97, become quite evident in the construction.

Now, the tediousness of this way of proceeding is very
much relieved by the adoption of certain principles de

pending on the character of the function, and on the avail

ability of differentiation.

227. The construction of the

values of a function of a variable

derivable from or referable to the

general equation of the First De-

gree, viz.,

is simplest by making x = 0, when we have y =
13

which value set off on I Y determines K (Fig. 2) ; making
Q

y =. 0, we derive x=
,
which determines the negativeA

value I L, for x. A straight line through K and
. L, ex

tended indefinitely, both ways, is the line sought.

If P Q, that is P M, be the increment h of the variable,

when having the value IP
, Q M becomes the decre

ment of the function when passing the value PP (sup

posing P M drawn parallel with I X), that is,

F(x + h) _Q M
h

~
P M*

and this quotient, in reference to the equation of the first

degree, happens to be of the same value as

dFx dy
, or,

-

dx dx
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that is, as the differential coefficient of the function, be

cause the value of this ratio does not change by making
A = 0.

As examples, let
t
each of the following explicit or im

plicit functions of x be constructed as specified.

3. 3(4 + 2aO + = 0.

4. y + x = 0.

5. ^_i_6= 0.

y

228. We can now illustrate geometrically how two

algebraic expressions, each containing a quantity x called

unknown, when equated with each other as in the solution

of some algebraic problems, render a determinate value

for #, and exclude it from being a variable. We may
construct independently each of these expressions as a

function of x. The point of a common value of each of

these functions determines the required value of a?.

This principle is general with reference to equations of

different degrees, and more values of x than one. At

present, however, let the illustration be of an equation of

the first degree.

Given the algebraic equation of virtually the first de

gree, viz.,

a x -(- b = a x -f- #
,

to construct the value of a?, which satisfies the condition,

without transposition of one member.

Let I M (Fig. 3) be the value
,
that is, what the first

member becomes when x = 0, and M M be the locus of

all values of a x + 6; let I L =
,
and L L be the

19*
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Fig. 3.

locus of all values of a x -(- b .

If they intersect, let P be the

point of intersection
;
draw P P

parallel to Y Y
,
and we have

I P, the value of x required. If

L I/ and M M do not inter

sect, in which case a must be

a = a
,

x will be indeterminate, L I/

M M either agreeing or being parallel to each other.

If, however, transpositions of one member of the equa
tion first take place, the construction will be one straight

line, which must be N P, I N being equal to I M I L
;

that is, to b b in

(a a ) x -f (b b
)
=

;

considering a
^&amp;gt;

a and b
f

^&amp;gt;b.

229. In the arithmetical rule of Double Position, in

which we operate without the possession of a visible

written equation, we virtually have, in the conditions of

questions ofiere-d for solution, a function (referable to an

equation of the first degree), equal to zero, to find JK, and we
are directed to suppose any two numbers for the unknown

quantity, and to test each of them in the conditions with

reference to finding the result, zero
;
the variations from

zero we call errors / whence by the use of the supposed

numbers, and the errors, we derive the value of the un

known quantity.

In Fig. 4, let N P be con- -

struction of

A x + B 0,

to find x or I P
;
we suppose

IP =S, to be IP, and find

-the error P Q = E; next Fig. 4.

Q&quot;
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we will suppose I P&quot;= S to be IP, and find the error

P&quot;
Q&quot;
= E . Whence we have

B:z::E E : S S.

This is an algebraical form of the rule, which, in arith

metical language, is necessarily stated with much circum

locution.

230, It is evidently impossible to draw a line repre

senting the differential dx of a variable a?, and another

representing d y, the differential of the function y, each

of such lines being zero in length ;
hence we cannot ex

hibit in visible amounts the ratio . But we can exhibit
d x

linear amounts of which the value of their ratio is exactly

the same as . Since there is a presumption that the
d x

construction of the values of functions in general, of a

single variable, may be by a line or lines not necessarily

straight, but curved, although without regard to a special

function we can determine nothing of its law, let a part of

such line be P&quot; P S, Fig. 5, and let T T be a straight line

meeting it at P
,
and agreeing with it in the nearest vicin

ity ofP ; then,

I P being JG, P P being y, let

PQ = P Q A, and we have

Q ?&quot; = F(x + h) and Q P&quot;=

F (x -f- A) Fx
;
hence we have

F(x+ A) Fx
_P&quot;Q

h ~P Q
5

and when h= 0, although T Q ,
P Q each become 0, we

have
dy T/ Q PP/
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In case y = a maximum or minimum, we evidently have

T P = co, T T being parallel with I X, so that

Now, the second and succeeding dif. coefs. are collectively

represented in value, by the ratio

P//T/

P Q

in the value it assumes when P Q =
/i, becomes zero.

With a view, however, to make originally the construc

tion of a given function of a single variable, and to deter

mine the direction of the line P Q R S (Fig. 1) through

any point P
,
the obvious direction is to determine the

value of T for that point, and by this value construct the
d x

course as a straight line for the immediate vicinity of the

point, and through the point.

When the axes of reference I Y and I X are rectangu

lar, the value of for any point P is the trigonometrical
Cv X

tangent of the angle, which the straight line touching the

curve at that point makes with I X, called the axis of x in

analytical geometry.

331. Before proceeding to the geometrical construc

tion of equations of the second and higher degrees, we

properly give attention to illustrations of maxima and

minima of functions of one independent variable.

The character of a maximum is shown
in Fig. 6, by observing that there is a value

at P greater than the nearest contiguous
values on either side of it. The maximum P
value of the function is P P . Kg. 6.
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A minimum is shown at Fig. 7.

A maximum and minimum of

the same function is shown in

Fig. 8. In these cases is sup

posed equal to zero.

In Fig. 9 is shown the character

of a maximum, and in Fig. 10 of a
d y

minimum, when =. &. These
d x

cases evidently come within the

definitions.

Fig. 7.

Fig. 9.

We show, in Figs. 11

and 12, cases illustrative of

= 0, while there is nei-
d x

ther a maximum nor mini-

P

P
Fig. 11.

mum. Instances by actual functions are,

by Fig. 11, y = a +(x )3,

by Fig. 12,
-

y = o (x + b)*.

Another instance is given in Fig. 13, a

corresponding function being

y b + (x a)*.

Fig. 8.

Fig. 10.

Fig. 12.

P

Fig. 13.

232. We come now to the geometrical con

struction of the general equation of the second degree,

which is,

(1.)

B* D
whence we derive y = o

--
2 A. 2 A.
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=b I /Y(B2_4AC) tf2_j_2(BD
2 A I/

D24AF); (2.)

the nature of which may be written,

y = A x + B VCC ajS + D s + E ); (2 .)

from (1.) we also derive x = ---
2 C 2C

4CF); (3.)

the nature of which may be written,

&quot;). (3 .)

Directing our attention to equation (2.) or (2 .),
we ob

serve that its radical

may have the value zero, at some value or two values of

a?, which may be found by solving the equation

these values found and substituted for x in

&quot;

(which is the whole equation when the radical is zero),

may give us two values of the function y and of the vari

able x
y
which must belong to the construction, in case the

values are not imaginary.
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Now, equation (2&quot;.),
when constructed, must be repre

sented by a straight line. Let L L be this line, and the

Fig. 14.

points P and P (Figs. 14 and 15), be determined by the

values of x just found. These two values of x are,

I 1

C 4 C 2/

If the radical term of this value of x is neither negative
nor zero, we certainly have two values of x

;
if zero, we

have one real value
;

if negative, we have no real value,

and no geometrical construction of equation (1.) is possible.

We will suppose we have two real values of x\ there

fore the line we wish to construct must meet the straight

line L L at the points P and P .

Now, by differentiating (2 .)
we have, when the radical

equals zero,

*
==A , .

IO/. + B
dx 2y(C .r

a
-f-D&amp;gt;;r + E )

Therefore the line sought, and necessarily meeting P and

P
,
must pass through these points, and for an extremely

short distance must pass through them parallel with I Y,
or what is the same, I Y .

We will now proceed to regard other values of ic, which
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revives (2 .)
in its full form, and will consider it in

three respects; ffrst, when C is negative; second, when
C is positive ;

third when C is zero, that is, when in (2.)

or
(3.)

:

(B2 4 AC) &amp;lt;0;

(B2_4 AC) &amp;gt;0;

(B2_4 AC) ^0.

233, When (B
2 4 A

C)&amp;lt;
0. Regarding C negative

in (2 .),
we observe that the values of x must evidently be

restricted within limits, in order that the value of the

radical may not be rendered imaginary (the term C ce 2

being the ruling term.) This is so whether x be consid

ered positively or negatively beyond the limits already
found for two of its values, P and P . Between these limits

all the real values of x (and consequently y) must be con

tained (Fig. 14).

The straight line L I/, already located and produced if

necessary, although meeting but two values of y, is never

theless one from which all the values of the radical in (2 )

are to be set off, in the two directions, parallel with I Y,
for all possible values of y. Taking any possible value

of #, we may substitute it for x in the radical, and deter

mine other points Q and Q ,
R and R in the line sought.

But it will be more interesting and expeditious to de

termine critical or singular points. Thus, the radical of

calling it a separate function y ,
must have its own max

imum and minimum, when

2C

by which value of ic, we determine the points R and R
,
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at the greatest distance from LI/; at which points the line

sought must run parallel with L L . Again, y has its max
imum and minimum separately from y . Let us deter

mine them at P and P ,
and we know that through these

points the line sought runs parallel with I X.

We have already discovered sufficient intimations of the

nature of the curve line we are endeavoring to trace
;
that

it may form a figure called an ellipse, but possibly a circle,

which, however, is a particular case of an ellipse. The

straight line P P 7
is a diameter, and must bisect all straight

lines drawn within the figure parallel to I Y and termi

nated by the circumscribing line.

Precisely the same result should we have arrived at,

had we originally endeavored to construct equation (3.) as a

function of y. Its form is the same, and it will be observed

that the coefficient of y
2
,
under the radical, viz. (B

2 4

AC) = C
,
is the same in both (2.) and (3.), which should

be so that the ellipse should be equally indicated by each

for the condition (B
2 4 A

C)&amp;lt;
0. But instead of the

line LL
,
we should have II

\
instead of I Y, we should

have I X
;
instead of P and P

,
we should have/* and

/&amp;gt; ,

and any lines drawn as chords in the figure parallel to

IX would be bisected by the conjugate diameter p p
f

,

and the dif. coefs. and
,
the reciprocals of each other

d x dy
in value for any given point, which of course they are by
notation.

The point I of the intersection of these diameters may
obviously be easily found at the outset from the two

equations,
Ex D

where we have virtually two (functions of x) = y, and a

20
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common possible value of y in each, as also of se, when
the value of x and y at the intersection 1 of these diame

ters will be
2AE BD

(7.)

Fig. 15.

334, When B 2 4 A C is positive.

Let, as before, the line L L/ (Fig. 15) be determined,

since the construction of this does not depend on the sign

ofB 2 4 A C.

Let also certain points, P and P
,
be found, at which the

value of the radical becomes zero, and for each of which

- = 4; GO as before. Therefore, through P and P
,
the re-

d x

quired line or curve will pass parallel with I Y. Let us next

inquire whether it is between these two values of x now
found or exterior to them, that all the real values of y are

to be found, and we may at once suspect that it is exte

rior, for the reason that C a;
2
, (2 .) being positive, the rad-

icfd y may have real values of unlimited greatness, posi

tively and negatively, as well as ie, while between these
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values of a-, all values of the radical part of y, and conse

quently y, are imaginary. Indeed, it is quite evident that

when x is sufficiently small or restricted, the terms D x -f-

E under the radical become ruling terms, over C x%.

Exterior to the values of ic, which determine P and P ,

let any value of x be assumed, and let the double values

of the radical portion of y be found, for such value of x
;

this will determine certain points, Q and Q ,
R and R

,
at

equal distances from L I/, as real values of the function y.

In this manner we find that the line sought will be a curve

consisting of two infinite, doubly symmetrical detached

branches, proceeding in opposite directions. It is the

hyperbola.
It is obvious that the curve, in the same position might

have been constructed from equation (3.), as the figure

will show, by reading the previous text in small letters

instead of capitals, and we thus determine p and p
r

etc.

as we have P and P
,
etc.

The lines P P and p p are called diameters of the

hyperbola. If, after having assumed axes of reference, we
should suppose these diameters could have any indepen
dent positions under the general equation (1.), we should

mistake, for their positions being determined by equations
d *u

(4.) and (5.) are such that
,
from each of these two virtual

d x

functions of x cannot have opposite signs.

Now, evidently, the values of x and y at the point of in

tersection of these diameters for the hyperbola, are deter

mined by equations (6.) and (7.), subject to regarding

(B
2 4 A C) as negative for the ellipse, and positive for

the hyperbola.

235. When (B
5* 4 A C) is zero.

In this condition the term under the radical in (2.) con

taining c 2 becomes virtually expunged.
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There can be but one value of x by which the radical in

(2.) can have the value zero.

Let the line L L
, Fig. 16, be

determined as in the two pro- ,, ,

ceding cases. In this line let

the one point P be found at

which the radical equals zero.

As before for this value is
d x

zb 03, indicating as before the

course of the line sought while
ITi cr 1 C

passing through P. Consider

next whether for greater or for less values of x than that

just found will the values of y be real. If greater, deter

mine any points, Q and Q 7 as before, and any other points
to the right of P. This curve is a parabola, of which L L
is a diameter.

We should have constructed the same figure from equa
tion (3.). The quantity preceding the radical would de

termine, as before, some other line, 1 1 parallel with L L
,

because the values of x and y in (6.) and (7.) become infi

nite. Then we should find the location of p in the same

way as P, q and q in the way as Q and Q . If 2 C D
B E, the lines L L and II become one, and the parabola
becomes merged in a straight line.

In order to construct the parabola in

the position required to represent the curve

described by projected bodies, in agree
ment with the natural occurrence (Fig. 17),

it will be necessary to regard the axis I Y Fl - 17 -

as perpendicular to the horizon, and I X as horizontal, and

to regard in equation (1.) A = 0, and B = 0, which is

compatible, as it must be, with B 2 4 AC = 0. Now,
we have directly,
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In order to obtain the same value of y from equation

(2.) we have it in this form,

which, if its meaning be sought, must be found equivalent
to the previous expression. For A = 0, and B = 0, that

reasoning in the foregoing text fails, which required a value

or values of x to be found, at which the radical in (2.) be

comes zero, since it cannot become so, unless D 0, which

it need not be
;
and if it should be, we must have,

n i - _ _ __
J

It is a principle that no line of the second order can be

intersected by a straight line in more than two points.

Both branches of the hyperbola can be considered but one

line, for the application of this principle. Curves of the

second degree are of the simplest kind.

We have now given summarily the general construction

of equations of the second degree ;
it may become very

much simplified for particular cases. In this general con

struction no particular regard was needed to the particu

lar individual signs of A or B, etc.

When the quantities, of whatever kind the units are

that enter into the conditions of any problem in this trea

tise, can be placed in the form of the general equation of

the second degree between two variables, the relation of

the real values of this implicit function of either of them

to the other can always be illustrated by the construction

of the indicated curve, or straight line or lines.

These curves or figures are the same as those produced

by the plane sections of a cone, or, in the case of the hy

perbola, of two similar cones of infinite axes having their

20*
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apexes in a common point, and their axes in one continu

ous straight line. The section of the plane through both

cones always produces the hyperbola; of which two inter

secting straight lines, and one straight line, are particular
cases.

A section of one of the cones by the plane which if

produced will not meet the other, if finite, produces the

ellipse, if infinite, the parabola.

Fig. 18 is a construction for prob
lem 27, page 85.

Fig. 19 is a construction for

4y2 20 yx + 17 X* 0.

Fig. 20 is a construction for prob
lem 7, page 122.

Fig. 19. Fig. 20.

1. Required the construction of

3 or 2 4= x 3 = 0.

2. Required the construction of the equation

y
2 2 ^ y 3 c

2 2y + 7cc 1 = 0.

3. Required the construction of the equation

y2 4 X2/ _|_4 a.2_|_2?/ 1 x 1=0.

4. Required to find the roots of x and y, which in the

two foregoing equations become concurrent, by construct

ing both equations on the same axes of reference.
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330. It would be impracticable, within the limits as

signed for these constructions, to undertake that of the

general equation of the third or any higher degree be

tween two variables
;
but we may make selections of a

few functions for construction without regard to classifica

tion by degrees, and with reference for the most part to

particular points of value, and to the vicinities of such

points.

In the construction of the particular case of

when the values of y are real, there

always must be some position for a

straight line which will intersect

the curve in three points. The
curve must pass through Y Y (Fig.

21), at the value D. There must

be a point, called the point of con-
Fio _

trary flexure, which must be at

the value ofa? at which

and the curve is symmetrical, with reference to this point,

in opposite directions. &quot;Several problems in a previous

section are based on a function of x of this nature.

In Fig. 22 is given the complete con

struction of

2 a x2
a;

4
.

In Fig. 23 is given the construction,
with the exception of infinite values,
for

ic
4

-(- 2 a ic
2
y a yz = 0.

Fig. 23.
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In Fig. 24 is given the construction for x = a, and x=
ft,

and for values of & between a and
ft,

and greater than
ft,

for the equation,

y (x a)* X V&quot;
b + c-

In Fig. 25 is given the construction of the equation,

There is an isolated point of a real value of y, at y= c,

^ y
x = a

;
at this point is imaginary ; which indicates

&amp;lt;/ ./

that the curve has no course through that point. The

value of the function for that point is drawn.

Fig. 24. Fig. 25. Fig. 26.

In Fig. 26 is given the construction for x 0, y = a

and the vicinity, for the equation,

a.

In Fig. 27 is given the construction for

one point, y = a and x = ft, and the vi

cinity, for the equation,

y = a (x ft)^ + (% ft)

In Fig. 28 is given the construction,

a being greater than ft, for the points

x= a, x =1
ft,

values between a and ft,

and greater than ft,
for the equation,

y = (x a) x V x k

Fig. 27.

Fig. 28.
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Let the function of x for problem 45, Section XII., be

compared with this last.

237, For the geometrical illustration of the value of

vanishing fractions, let the numerator Fx and the denom
inatorfx be constructed independently on the same axes

of reference, for the value zero of each function, and for

the vicinity of that value. Let N P N in each figure be

the construction for the numerator F x, and D P D be

that for the denominator f x, the point P being that of

their concurrent value zero. Taking P O = A, and draw

ing S O, S O, or S S parallel with I Y, we shall have

for that value of x next succeeding that agreeing with

F x = 0, and/a = 0,

F(x+h} OS

As demonstrated in the section on the subject, we have

in general when h = 0,

Fx p p&amp;gt;- or,
- -

or, etc.

fx q q&quot;,

1. Fig. 29 exhibits the construction

when x a, for

and its value is, by ,
= -

;
in this

case it is obviously no matter whether

h equal zero or not.

2. Fig. 30 exhibits when x = a, its value be-
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3. Fig. 31 exhibits

9
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(a-*)
. when x = a, its value be-

Fig. 31.

4. Fig. 32 exhibits
, when x = a, its value be-

&quot;

&quot;

(a a;)
3

Fig. 33.

In this case, since both first dif. coefs. vanish, the inspec

tion of the figure will not show the obviousness of the

value found, unless we consider that as h becomes 0, and

each first dif. coef. 0, the value desired may be considered

without a more particular analysis, as

O s S

S S
= CO.
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238. In order to construct geometrically the associated

values of logarithms and their natural numbers, let the

axes of reference I X and Y Y intersect at I and at any

angle, as in the previous constructions. Since the loga
rithmic function is

y log. as,

let the values of #, that is, the natural numbers, be taken in

I X (Fig. 33), commencing at I
;
then may y, that is, log. x,

be taken in I Y when positive, and in I Y
,
when negative.

Take some distance I P for 1, and since log. 1 is zero for

every system, the required line will meet I X at P. Now,
since for the hyperbolic system

and since for values of x greater than 1, y is positive, and

for values of x less than 1, y is negative, and since the dif.

coef. has but one value when x 1, the required line

will pass through P, equally inclined to I X and Y Y .

Taking Ip = l,= modulus, the straight line joining

p P will be tangent to the curve, showing its course

through P. For any other number or numerical quantity,

I Q or I R determine the hyperbolic logarithm Q Q ,
or

R R
,
and by the corresponding values of determine

d x

the course of the curve through Q and R . In order to

find where the tangents for any points Q and R intersect

Y Y
,
take in I Y, I q= Q Q 1, 1 r= R R - -

1, and q
and r are the points, respectively. If I Q= 2.71828, Q Q
= 2, and q agrees with I. If I R = 7.38905 (2.71828)

2
,

then R R = 2, and Ir = l. A line passing through

Q ,
R

, etc., wherever they may be determined, as also

through P, is the logarithmic curve for the hyperbolic

system.
If all the values obtained for y, by the method just given,
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be divided by the base of the hyperbolic system, viz.

2.71828, the values of y for the common system will be

obtained. For this system the modulus being .43429,

this, instead of 1, is the amount by which any logarithm
must exceed the value from I on Y Y

,
at which a tangent

to the curve, corresponding with such logarithm, intersects

Y Y . This curve is. drawn in the figure. If I S = 10,

then S &= 1, and S S = 2.30258 = -^^- the ratio

of the moduli.

The logarithmic curve may sometimes be alluded to in

books when rectangular axes of reference must be under

stood
;
as in the case of the area of such curve.

By the construction of all functions of one inde

pendent variable, when this is possible, that is, when the

values of them are not imaginary, and by partial construc

tion when some values are infinite, we exhaust the availa

bility of a plane for the representation ; equally so whether

the axes of reference be rectangular or not.

In order to construct a function *of two independent va

riables notated f (x, y) =. z, we may resort to space, in

which solid forms are embraced
;
the points, lines, planes,

and surfaces defined in space, however, we may project on

a plane, as by Fig. 34.

Let the plane X X Y Y be intersected in Y Y
by the plane Y Y Z Z

,
and also in X X by the plane

X X Z Z
,
each intersection at any angle. If these

angles be all right angles, there will be a simplification

of the principle ;
but it should be borne in mind that

they need not necessarily be so for all purposes. If x be

taken of the value I N, and y of the value I O, then P is

the point at which these values concur; for these val

ues, z has a value which let P P parallel with Z Z rep
resent. If N N = A, then P P becomes Q Q . If O O
= k, so that I O =. y -\- k, then for x =. I N, z becomes
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R R . So that for y -|- and for x -f- h, we have z= S S

=F (x+ A, y+ /O . Through P and R let a line P R
in the plane of P P , R R pass. Through Q and S let

a line Q S in the plane of Q Q , S S pass. Through P
and Q let the line P Q in the plane of P P 7 and Q Q
pass. Through R and S let the line R S in the plane
ofR R and S S pass. The surface expressed by P

7 R
,

P Q ,
R S

, Q S
,
for the vicinity of P

,
is determinate

by the positions which z will require for its expression.

The function F
(a-, y) = 2, in its special character, must

determine the law of this surface, for the positive and neg

ative, single and multiplied values of z. It is obvious that

the variables x and y may be independent.

If attention is directed only to the plane P P Q Q .

the mode of representing
- - is obvious

;
if only to the

d x
d z

plane P P R R
,
the mode of representing is sufficient

ly obvious.

The surface that is the locus of the general equation of

the first degree between three variables, two of them inde

pendent, the equation being

21



242 DIFFERENTIAL CALCULUS.

is a piano any how posited with reference to the three as

sumed planes.

The general equation of the second degree between

three variables, is

H y + K x + L = 0,

the construction of which for the locus of 2, will determine

a surface of such a character, that a section of it parallel

with one of the planes of reference produces a curve of

the second degree. Such a surface bounds a sphere; or a

hyperboloid, described by a hyperbola revolving about its

transverse axis
;

or a paraboloid, described by the revo-

tion of a parabola about its axis
;
an ellipsoid, described by

the revolution of an ellipse about either its major or minor

axis
;
or a cone, or a cylinder, the cone being a particular

case of the hyperboloid ;
either of them any how posited.

The geometrical construction of a function of two inde

pendent variables of a higher degree than the second,

will of course be by surfaces, but we can do no more than

mention the methods suggested by general principles, the

determination of maxima and minima for z, and of the

position of the surface through any point P by the values

of
, ;

and refer to the analytical geometry of three
d x d y

dimensions, in systematic treatises. (J. R. Young s.)

A function of four or more variables can have no geo
metrical construction

;
nor one of three, when the value of

z becomes imaginary.

Tn closing the present treatise, it is deemed worthy of

remark that at least three American treatises, each par-
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tially devoted to the differential calculus, present as Tay
lor s theorem, both in the enunciation and in the nature of

its formula, something fatally different from it, and of an

unwarranted character. Let Young s Differential Calculus,

one of the most scientific in the English language, be com

pared with these
;
or let the original of Brook Taylor, in

the Philosophical Transactions, be consulted. There is no

need of argument on this matter.

In one of the three treatises there is an apparent success

in examples employing dx as the equivalent of one minute

or one second of an arc, or as being simply one in pure
number. This gives a result that for the number of

decimal places employed in the trigonometrical tables may
be sufficiently correct

; simply because one second, or even

one minute happens, by the arbitrary division of the arc

of a circle into certain number of degrees, minutes, or sec

onds, a matter utterly independent of the calculus, to be

so small an arc. If the number of decimal places were

increased, all these examples would be found to fail.

But having the logarithm of any number a to find log.

(a -f- 1) in the manner adopted in the same treatise, by

adding to log. a simply ,
is to ignore the terms that fol-

a

low in the brackets, where we give the full development
for the hyperbolic system, of the direct point at issue, viz.,

the number a must be very large that this method may
not notoriously fail, for even the early decimal places of

the logarithmic tables. Yet we find no intimation of a

caution.

It is plain that dx cannot be anything in value else

than 0, since, by hypothesis and by definition, it is made so.

One of these treatises (Art. 13) undertakes to demon-
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strate that &quot; if two functions are equal, their differentials are

also equal ;&quot;
an impossible general truth, considering these

differentials as zeros, but necessarily independent. The

apparent demonstration is a tautology of notation.

The same treatise, in Art. 37, undertakes to differentiate

log. v by assuming, in the course of the demonstration,

the development of log. (1 -|- y), a development which

must depend upon the differentiation of log. (1 -f- y).

Hence, the necessary analysis of differentiating log. v is all

eliminated, and absent, and the demonstration void. Op
portunities requiring criticism, as well taken as in the

instances we have just presented, are copious throughout
the part devoted to the differential calculus.

THTC END.

HJ

Page 15, line 7,/or ^ being, read f and x.

P. 31, at foot, dele h from the minuendive fraction.
P. 45, in example 8, for 3W

,
read 3 n.

P. 68, 1. 16,yor the second h, read -\- h.

P. 73, ex. 17. for the exponent |,
read

f.
P. 98, 1. 3, after range, read of-the product of any two

20, 1. 2,/or 3 i or Tfo, read | or 3.08.
P. 140, 1. 3, for gained, read lost.

P. 192, equation 2. rfe/e dx from the numerator.

P. 201, 1. 6, draw a mnculum over L
(T

P. 236, 1. 6, for 7/2
IB X fa + xj2 + bj rcad y =& (a + x) -f c.

P. 244, dele lines 5th to the 1 \th.









14 DAY USE
RETURN TO DESK FROM WHICH BORROWED

LOAN DEPT.
This book is due on the last date stamped below, or

on the date to which renewed.

Renewed books are subject to immediate recall.

lONov BOMW

&amp;lt; o
Tftrt

JBI

2Dec 60j

R 2 4 R4 -2PM

MV
i



740488

- :

/.. : v

UNIVERSITY OF CALIFORNIA LIBRARY




